当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling the drying shrinkage of porous materials by considering both capillary and adsorption effects
Journal of the Mechanics and Physics of Solids ( IF 5.3 ) Pub Date : 2020-05-23 , DOI: 10.1016/j.jmps.2020.104016
G. El Tabbal , P. Dangla , M. Vandamme , M. Bottoni , S. Granet

This paper presents a poromechanical model for drying of unsaturated porous media valid for a large range of relative humidity. Using the proper laws of thermodynamics, this model is derived and permits to account for different effects that contribute to the effective stress development: the average pore pressure effect, the energy of the interfaces effect, the surface adsorption effect and the Shuttleworth effect. The majority of the input parameters of this model are simply assessed by using two commonly known techniques for the characterization of pores structures applied on experimental desorption isotherms: the B.E.T theory (Brunauer et al., 1938) and the BJH technique (Barrett et al., 1951). Another input parameter (linked to the Shuttleworth effect) is fitted on experimental drying shrinkage strains. This model is tested and validated with experimental data for different porous materials - hardened ordinary cement paste, high- performance concrete and Vycor glass - found in the literature. The obtained results show a satisfactory evaluation of the drying shrinkage strains for all three tested materials, with the possibility of considering zero fitting parameter. Compared to other poromechanical models found in the literature such as the classical Biot-Bishop (Biot, 1941) model and the (Coussy et al., 2003) model, our model appears to be capable of displaying the transition at a certain relative humidity between the capillary pressure effects and the surface adsorption effect, which manifests itself by a plateau in the drying shrinkage strains curve at this value of relative humidity.



中文翻译:

同时考虑毛细作用和吸附作用来模拟多孔材料的干燥收缩率

本文提出了一种在较大的相对湿度范围内有效的用于干燥不饱和多孔介质的多孔力学模型。使用适当的热力学定律,可以推导该模型,并可以考虑有助于有效应力发展的不同效应:平均孔隙压力效应,界面能,表面吸附效应和沙特尔沃思效应。该模型的大多数输入参数可以简单地通过使用两种常用的技术来表征用于实验解吸等温线的孔结构来评估:BET理论(Brunauer等,1938)和BJH技术(Barrett等。 (1951年)。另一个输入参数(与沙特尔沃思效应相关)适用于实验干燥收缩率。该模型已通过文献中发现的各种多孔材料(硬化的普通水泥浆,高性能混凝土和Vycor玻璃)的实验数据进行了测试和验证。获得的结果显示了对所有三种测试材料的干燥收缩应变的令人满意的评估,并且可以考虑零拟合参数。与文献中发现的其他体力学模型相比,例如经典的Biot-Bishop(Biot,1941)模型和(Coussy et al。,2003)模型,我们的模型似乎能够显示在一定的相对湿度之间的转变。在此相对湿度值下,干燥收缩应变曲线中的平稳状态表明了毛细管压力效应和表面吸附效应。

更新日期:2020-05-23
down
wechat
bug