当前位置: X-MOL 学术Electronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Optimized Balance of Plant for a Medium-Size PEM Electrolyzer. Design, Control and Physical Implementation
Electronics ( IF 2.9 ) Pub Date : 2020-05-24 , DOI: 10.3390/electronics9050871
Julio José Caparrós Mancera , Francisca Segura Manzano , José Manuel Andújar , Francisco José Vivas , Antonio José Calderón

The progressive increase in hydrogen technologies’ role in transport, mobility, electrical microgrids, and even in residential applications, as well as in other sectors is expected. However, to achieve it, it is necessary to focus efforts on improving features of hydrogen-based systems, such as efficiency, start-up time, lifespan, and operating power range, among others. A key sector in the development of hydrogen technology is its production, renewable if possible, with the objective to obtain increasingly efficient, lightweight, and durable electrolyzers. For this, scientific works are currently being produced on stacks technology improvement (mainly based on two technologies: polymer electrolyte membrane (PEM) and alkaline) and on the balance of plant (BoP) or the industrial plant (its size depends on the power of the electrolyzer) that runs the stack for its best performance. PEM technology offers distinct advantages, apart from the high cost of its components, its durability that is not yet guaranteed and the availability in the MW range. Therefore, there is an open field of research for achievements in this technology. The two elements to improve are the stacks and BoP, also bearing in mind that improving BoP will positively affect the stack operation. This paper develops the design, implementation, and practical experimentation of a BoP for a medium-size PEM electrolyzer. It is based on the realization of the optimal design of the BoP, paying special attention to the subsystems that comprise it: the power supply subsystem, water management subsystem, hydrogen production subsystem, cooling subsystem, and control subsystem. Based on this, a control logic has been developed that guarantees efficient and safe operation. Experimental results validate the designed control logic in various operating cases, including warning and failure cases. Additionally, the experimental results show the correct operation in the different states of the plant, analyzing the evolution of the hydrogen flow pressure and temperature. The capacity of the developed PEM electrolysis plant is probed regarding its production rate, wide operating power range, reduced pressurization time, and high efficiency.

中文翻译:

中型PEM电解槽的设备优化平衡。设计,控制和物理实施

氢技术在运输,交通,微电网甚至住宅应用以及其他行业中的作用将逐渐增加。但是,要实现这一目标,必须集中精力改善氢基系统的功能,例如效率,启动时间,寿命和工作功率范围等。氢技术发展的关键领域是其生产,如果可能的话,可再生,目的是获得越来越高效,轻便和耐用的电解槽。为此,目前正在根据堆栈技术改进来生产科学作品(主要基于两种技术:聚合物电解质膜(PEM)和碱性膜)以及运行该电池组以实现其最佳性能的工厂(BoP)或工业工厂的平衡(其大小取决于电解槽的功率)。PEM技术具有独特的优势,除了其组件的高成本,尚不能保证的耐用性以及在MW范围内的可用性。因此,对于该技术的成就,存在一个开放的研究领域。需要改进的两个元素是堆栈和BoP,同时请记住,改进BoP将对堆栈操作产生积极影响。本文开发了中型PEM电解槽BoP的设计,实现和实际实验。它基于BoP最佳设计的实现,并特别注意组成BoP的子系统:电源子系统,水管理子系统,制氢子系统,冷却子系统和控制子系统。在此基础上,开发了一种控制逻辑,可确保有效且安全的操作。实验结果验证了在各种操作情况下(包括警告和故障情况)设计的控制逻辑。此外,实验结果通过分析氢气流量压力和温度的变化,显示了在工厂不同状态下的正确操作。探索了发达的PEM电解装置的生产能力,宽工作功率范围,缩短的加压时间和高效率的能力。已经开发出一种控制逻辑,以确保有效且安全的操作。实验结果验证了在各种操作情况下(包括警告和故障情况)设计的控制逻辑。此外,实验结果通过分析氢气流量压力和温度的变化,显示了在工厂不同状态下的正确操作。探索了发达的PEM电解装置的生产能力,宽工作功率范围,减少的加压时间和高效率的能力。已经开发出一种控制逻辑,以确保有效且安全的操作。实验结果验证了在各种操作情况下(包括警告和故障情况)设计的控制逻辑。此外,实验结果通过分析氢气流量压力和温度的变化,显示了在工厂不同状态下的正确操作。探索了已开发的PEM电解装置的生产能力,宽工作功率范围,缩短的加压时间和高效率的能力。分析氢气流量压力和温度的变化。探索了已开发的PEM电解装置的生产能力,宽工作功率范围,缩短的加压时间和高效率的能力。分析氢气流量压力和温度的变化。探索了已开发的PEM电解装置的生产能力,宽工作功率范围,缩短的加压时间和高效率的能力。
更新日期:2020-05-24
down
wechat
bug