当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparative investigation of microjetting from tin surface subjected to laser and plane impact loadings via molecular dynamics simulations
Mechanics of Materials ( IF 3.9 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.mechmat.2020.103479
Guanqing Tang , Bo Li , Xiaoliang Deng , Liang Wang , Wenjun Zhu , Wangyu Hu , Fei Gao

Abstract The microjetting processes of single-crystal tin with sinusoidal surface defects under laser loading and plane impact loading are investigated by using molecular dynamics simulations via the second nearest-neighbor modified embedded atom method potential. Simulation results exhibit that the jetting factors for laser loading and plane impact loading first increase with the increment of shock breakout pressure and then reach their own saturation values, in agreement with previous experimental observations. However, the jetting factor under laser loading saturates at relatively lower shock breakout pressure than its counterpart under plane impact loading. Structure analysis via x-ray diffraction and radial distribution function techniques indicates that the laser loading leads to higher melting degree, which further facilitates the ejection process. The spike velocity linearly depends on the shock breakout pressure for both loading methods, but the bubble velocity varies with the loading method. In addition, void nucleation and growth within the sample are observed for laser loading due to the interaction of release waves. The simulation results reveal the underlying mechanisms of ejection process under plane impact loading and laser loading, helping enhance the understanding of microjetting phenomena.

中文翻译:

通过分子动力学模拟对激光和平面冲击载荷下锡表面微喷射的比较研究

摘要 利用分子动力学模拟,通过第二近邻修正嵌入原子法势,研究了在激光加载和平面冲击加载下具有正弦表面缺陷的单晶锡的微喷射过程。模拟结果表明,激光加载和平面冲击加载的喷射因子随着冲击爆发压力的增加而先增加,然后达到各自的饱和值,与先前的实验观察一致。然而,激光加载下的喷射因子在比平面冲击加载下的对应物相对较低的冲击突破压力下饱和。通过 X 射线衍射和径向分布函数技术的结构分析表明,激光加载导致更高的熔化度,这进一步促进了弹出过程。对于两种加载方法,尖峰速度线性取决于冲击突破压力,但气泡速度随加载方法而变化。此外,由于释放波的相互作用,在激光加载时观察到样品内的空隙成核和生长。模拟结果揭示了平面冲击载荷和激光载荷下喷射过程的潜在机制,有助于加深对微喷射现象的理解。
更新日期:2020-09-01
down
wechat
bug