当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
NAD(P)-dependent glucose dehydrogenase: Applications for biosensors, bioelectrodes, and biofuel cells.
Bioelectrochemistry ( IF 5 ) Pub Date : 2020-05-23 , DOI: 10.1016/j.bioelechem.2020.107574
Krzysztof Stolarczyk 1 , Jerzy Rogalski 2 , Renata Bilewicz 1
Affiliation  

This review discusses the physical and chemical properties of nicotinamide redox cofactor dependent glucose dehydrogenase (NAD(P) dependent GDH) and its extensive application in biosensors and bio-fuel cells. GDHs from different organisms show diverse biochemical properties (e.g., activity and stability) and preferences towards cofactors, such as nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+). The (NAD(P)+) play important roles in biological electron transfer, however, there are some difficulties related to their application in devices that originate from their chemical properties and labile binding to the GDH enzyme. This review discusses the electrode modifications aimed at immobilising NAD+ or NADP+ cofactors and GDH at electrodes. Binding of the enzyme was achieved by appropriate protein engineering techniques, including polymerisation, hydrophobisation or hydrophilisation processes. Various enzyme-modified electrodes applied in biosensors, enzymatic fuel cells, and biobatteries are compared. Importantly, GDH can operate alone or as part of an enzymatic cascade, which often improves the functional parameters of the biofuel cell or simply allows use of cheaper fuels. Overall, this review explores how NAD(P)-dependent GDH has recently demonstrated high potential for use in various systems to generate electricity from biological sources for applications in implantable biomedical devices, wireless sensors, and portable electronic devices.



中文翻译:

NAD(P)依赖性葡萄糖脱氢酶:用于生物传感器,生物电极和生物燃料电池的应用。

这篇综述讨论了烟酰胺氧化还原辅因子依赖性葡萄糖脱氢酶(NAD(P)依赖性GDH)的物理和化学性质及其在生物传感器和生物燃料电池中的广泛应用。来自不同生物的GDH表现出不同的生化特性(例如,活性和稳定性),并偏爱诸如烟酰胺腺嘌呤二核苷酸(NAD +)和烟酰胺腺嘌呤二核苷酸磷酸(NADP +)等辅助因子。(NAD(P)+)在生物电子转移中起重要作用,但是,由于其化学性质和与GDH酶的不稳定结合,在其应用于装置中存在一些困难。这篇评论讨论了旨在固定NAD +的电极修饰或电极上的NADP +辅因子和GDH。通过适当的蛋白质工程技术,包括聚合,疏水化或亲水化工艺,可以实现酶的结合。比较了应用于生物传感器,酶燃料电池和生物电池的各种酶修饰电极。重要的是,GDH可以单独运行,也可以作为酶促级联反应的一部分运行,这通常可以改善生物燃料电池的功能参数,也可以简单地使用便宜的燃料。总体而言,这篇综述探讨了依赖NAD(P)的GDH最近如何展示出在各种系统中用于从生物源中产生电的潜力,以用于植入式生物医学设备,无线传感器和便携式电子设备。

更新日期:2020-05-23
down
wechat
bug