当前位置: X-MOL 学术Ionics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Momentum-species-heat-electrochemistry distribution characteristics within solid oxide fuel cell stack with complex inter-digital fuel channels
Ionics ( IF 2.8 ) Pub Date : 2020-05-24 , DOI: 10.1007/s11581-020-03602-9
Kai Ding , Mingfeng Zhu , Zhen Han , Vladimir Kochetov , Liu Lu , Daifen Chen

Obtaining the real working details within solid oxide fuel cell (SOFC) stacks are essential to the commercializing of SOFC technology. However, high operation temperature and small channel space features are two obstacles to achieving these details. In order to predict the complex physical item distribution characteristics within those SOFC stacks adopting inter-digital fuel channels, a comprehensive 5-cell large-scale model is firstly developed. The 3D model consists of all the complex solid, space, and porous medium components. After high-quality messes are addressed, the momentum, species, energy, e and O2− charge conservation equations, and anodic/cathodic electrochemical reaction equations are coupled to the corresponding zones. The air/fuel flows, hydrogen/oxygen mole fractions, temperature, electrochemical active sites, and electric current distributing details within the stack are successfully achieved. It is an important step to further optimize the component structures for balancing the physics-chemical processes on stack level.
A 3D large-scale model that couples momentum, species, energy, e and O2− charge conservations, and anodic/cathodic electrochemical half reactions is firstly established for those SOFC stacks with inter-digital fuel channels; and the corresponding multi-physics distribution features within the stack are achieved.


中文翻译:

具有复杂叉指燃料通道的固体氧化物燃料电池堆内动量-种类-热电化学分布特征

获得固体氧化物燃料电池(SOFC)堆栈内的实际工作细节对于SOFC技术的商业化至关重要。然而,高工作温度和小的通道空间特征是实现这些细节的两个障碍。为了预测采用数字燃料通道的那些SOFC燃料电池堆中复杂的物理项目分布特性,首先开发了一个全面的5单元大规模模型。3D模型由所有复杂的固体,空间和多孔介质组成。经过高品质的混乱得到解决,气势,种类,能量,电子-和O 2 -电荷守恒方程和阳极/阴极电化学反应方程耦合到相应的区域。烟囱内的空气/燃料流量,氢气/氧气摩尔分数,温度,电化学活性位点和电流分布细节已成功实现。这是进一步优化组件结构以在堆栈级别平衡物理化学过程的重要步骤。
甲3D大型模型耦合动量,种类,能量,电子-和O 2-的电荷守恒,和阳极/阴极的电化学半反应是首先建立用于与叉指式燃料通道那些SOFC堆; 并实现了堆栈中相应的多物理场分布特征。
更新日期:2020-05-24
down
wechat
bug