当前位置: X-MOL 学术IEEE Trans. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stable Responsive EMG Sequence Prediction and Adaptive Reinforcement with Temporal Convolutional Networks
IEEE Transactions on Biomedical Engineering ( IF 4.6 ) Pub Date : 2020-06-01 , DOI: 10.1109/tbme.2019.2943309
Joseph L. Betthauser , John T. Krall , Shain G. Bannowsky , Gyorgy Levay , Rahul R. Kaliki , Matthew S. Fifer , Nitish V. Thakor

Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior. Objective: We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance. Methods: We compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets. Results: Temporal convolutional networks yield predictions that are more accurate and stable $(p < 0.001)$ than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms $(p < 0.001)$ and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training. Significance: Sequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training. Conclusions: Addressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.

中文翻译:

具有时间卷积网络的稳定响应 EMG 序列预测和自适应强化

从肌电图 (EMG) 信号预测运动意图通常使用模式识别方法执行,其中原始 EMG 的短数据帧被压缩为对分类有意义的瞬时特征编码。然而,EMG 信号是随时间变化的,这意味着逐帧方法可能无法将时间上下文充分整合到预测中,从而导致不稳定和不稳定的预测行为。客观的: 我们证明了顺序预测模型,特别是时间卷积网络能够利用来自 EMG 的有用时间信息来实现卓越的预测性能。 方法:我们将此方法与其他顺序和逐帧模型进行比较,该模型在最小约束实验中预测 2 名截肢者和 13 名非截肢者人类受试者的 3 个同时手和手腕的自由度。我们还在公开可用的 Ninapro 和 CapgMyo 截肢者和非截肢者数据集上比较了这些模型。结果: 时间卷积网络产生更准确和稳定的预测 $(p < 0.001)$ 比逐帧模型,尤其是在类间转换期间,平均响应延迟为 4.6 毫秒 $(p < 0.001)$和更简单的特征编码。他们的表现可以通过适应性强化训练进一步提高。意义: 结合来自 EMG 的时间信息的序列模型实现了卓越的运动预测性能,这些模型允许进行新型交互训练。 结论: 将 EMG 解码作为一个顺序建模问题将导致假肢控制系统的可靠性、响应性和运动复杂性的增强。
更新日期:2020-06-01
down
wechat
bug