当前位置: X-MOL 学术bioRxiv. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
COX-1 - lipid interactions: arachidonic acid, cholesterol, and phospholipid binding to the membrane binding domain of COX-1
bioRxiv - Biophysics Pub Date : 2020-05-22 , DOI: 10.1101/2020.05.21.109363
Besian I. Sejdiu , D. Peter Tieleman

Cyclooxygenases carry out the committed step in prostaglandin synthesis and are the target of NSAIDs, the most widely used class of drugs in alleviating pain, fever, and inflammation. While extensively studied, one aspect of their biology that has been neglected is their interaction with membrane lipids. Such lipid-protein interactions have been shown to be a driving force behind membrane protein function and activity. Cyclooxygenases (COX-1 and COX-2) are bound on the luminal side of the endoplasmic reticulum membrane. The entrance to their active site is formed by a long hydrophobic channel which is used by the cyclooxygenase natural substrate, arachidonic acid, to access the enzyme. Using atomistic and coarse-grained simulations, we show that several membrane lipids are capable of accessing the same hydrophobic channel. We observe the preferential binding of arachidonic acid, cholesterol, and glycerophospholipids with residues lining the cavity of the channel. We find that the membrane binding domain (MBD) of COX-1 is usually in a lipid-bound state and not empty. This orthosteric binding by other lipids suggests a potential regulatory role of membrane lipids with the possibility of affecting the COX-1 turnover rate. We also observed the unbiased binding of arachidonic acid to the MBD of COX-1 allowing us to clearly delineate its binding pathway. We identified a series of arginine residues as being responsible for guiding arachidonic acid towards the binding site. Finally, we were also able to identify the mechanism by which COX-1 induces a positive curvature on the membrane environment.

中文翻译:

COX-1-脂质相互作用:花生四烯酸,胆固醇和磷脂与COX-1的膜结合域结合

环氧合酶是前列腺素合成的重要步骤,是非甾体抗炎药的目标,非甾体抗炎药是缓解疼痛,发烧和炎症最广泛使用的一类药物。经过广泛研究,它们生物学的一个方面被忽略了,即它们与膜脂的相互作用。已经显示这种脂蛋白相互作用是膜蛋白功能和活性背后的驱动力。环氧合酶(COX-1和COX-2)结合在内质网膜的腔侧。它们的活性位点的入口是由长的疏水通道形成的,该通道被环氧合酶天然底物花生四烯酸用于访问该酶。使用原子和粗粒度模拟,我们显示了几种膜脂质能够访问相同的疏水通道。我们观察到花生四烯酸,胆固醇和甘油磷脂与残留在通道腔内的残基的优先结合。我们发现,COX-1的膜结合域(MBD)通常处于脂质结合状态而不是空的。其他脂质的正构结合表明膜脂质具有潜在的调节作用,并可能影响COX-1转化率。我们还观察到花生四烯酸与COX-1的MBD的无偏结合,使我们能够清楚地描述其结合途径。我们确定了一系列精氨酸残基负责引导花生四烯酸朝向结合位点。最后,我们还能够确定COX-1引起膜环境正曲率的机制。和甘油磷脂,残留物位于通道腔内。我们发现,COX-1的膜结合域(MBD)通常处于脂质结合状态而不是空的。其他脂质的正构结合表明膜脂质具有潜在的调节作用,并可能影响COX-1转化率。我们还观察到花生四烯酸与COX-1的MBD的无偏结合,使我们能够清楚地描述其结合途径。我们确定了一系列精氨酸残基负责引导花生四烯酸朝向结合位点。最后,我们还能够确定COX-1在膜环境上引起正曲率的机制。和甘油磷脂,残留物位于通道腔内。我们发现,COX-1的膜结合域(MBD)通常处于脂质结合状态而不是空的。其他脂质的正构结合表明膜脂质具有潜在的调节作用,并可能影响COX-1转化率。我们还观察到花生四烯酸与COX-1的MBD的无偏结合,使我们能够清楚地描述其结合途径。我们确定了一系列精氨酸残基负责引导花生四烯酸朝向结合位点。最后,我们还能够确定COX-1引起膜环境正曲率的机制。其他脂质的正构结合表明膜脂质具有潜在的调节作用,并可能影响COX-1转化率。我们还观察到花生四烯酸与COX-1的MBD的无偏结合,使我们能够清楚地描述其结合途径。我们确定了一系列精氨酸残基负责引导花生四烯酸朝向结合位点。最后,我们还能够确定COX-1引起膜环境正曲率的机制。其他脂质的正构结合表明膜脂质具有潜在的调节作用,并可能影响COX-1转化率。我们还观察到花生四烯酸与COX-1的MBD的无偏结合,使我们能够清楚地描述其结合途径。我们确定了一系列精氨酸残基负责引导花生四烯酸朝向结合位点。最后,我们还能够确定COX-1引起膜环境正曲率的机制。我们确定了一系列精氨酸残基负责引导花生四烯酸朝向结合位点。最后,我们还能够确定COX-1引起膜环境正曲率的机制。我们确定了一系列精氨酸残基负责引导花生四烯酸朝向结合位点。最后,我们还能够确定COX-1引起膜环境正曲率的机制。
更新日期:2020-05-22
down
wechat
bug