当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Computationally efficient sparse clustering
arXiv - CS - Computational Complexity Pub Date : 2020-05-21 , DOI: arxiv-2005.10817
Matthias Löffler; Alexander S. Wein; Afonso S. Bandeira

We study statistical and computational limits of clustering when the means of the centres are sparse and their dimension is possibly much larger than the sample size. Our theoretical analysis focuses on the simple model $X_i = z_i \theta + \varepsilon_i$, $z_i \in \{-1,1\}$, $\varepsilon_i \thicksim \mathcal{N}(0, I)$, which has two clusters with centres $\theta$ and $-\theta$. We provide a finite sample analysis of a new sparse clustering algorithm based on sparse PCA and show that it achieves the minimax optimal misclustering rate in the regime $\|\theta\| \rightarrow \infty$, matching asymptotically the Bayes error. Our results require the sparsity to grow slower than the square root of the sample size. Using a recent framework for computational lower bounds---the low-degree likelihood ratio---we give evidence that this condition is necessary for any polynomial-time clustering algorithm to succeed below the BBP threshold. This complements existing evidence based on reductions and statistical query lower bounds. Compared to these existing results, we cover a wider set of parameter regimes and give a more precise understanding of the runtime required and the misclustering error achievable. We also discuss extensions of our results to more than two clusters.
更新日期:2020-05-21

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug