当前位置: X-MOL 学术Mathematics › 论文详情
Multi-Objective Optimization Benchmarking Using DSCTool
Mathematics ( IF 1.105 ) Pub Date : 2020-05-22 , DOI: 10.3390/math8050839
Peter Korošec; Tome Eftimov

By performing data analysis, statistical approaches are highly welcome to explore the data. Nowadays with the increases in computational power and the availability of big data in different domains, it is not enough to perform exploratory data analysis (descriptive statistics) to obtain some prior insights from the data, but it is a requirement to apply higher-level statistics that also require much greater knowledge from the user to properly apply them. One research area where proper usage of statistics is important is multi-objective optimization, where the performance of a newly developed algorithm should be compared with the performances of state-of-the-art algorithms. In multi-objective optimization, we are dealing with two or more usually conflicting objectives, which result in high dimensional data that needs to be analyzed. In this paper, we present a web-service-based e-Learning tool called DSCTool that can be used for performing a proper statistical analysis for multi-objective optimization. The tool does not require any special statistics knowledge from the user. Its usage and the influence of a proper statistical analysis is shown using data taken from a benchmarking study performed at the 2018 IEEE CEC (The IEEE Congress on Evolutionary Computation) is appropriate. Competition on Evolutionary Many-Objective Optimization.
更新日期:2020-05-22

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug