当前位置: X-MOL 学术J. Biomed. Mater. Res. Part A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes.
Journal of Biomedical Materials Research Part A ( IF 4.9 ) Pub Date : 2020-05-22 , DOI: 10.1002/jbm.a.37016
Yuan Sun 1, 2, 3 , Xifeng Liu 1, 2 , Matthew N George 1, 2 , Sungjo Park 4 , Bipin Gaihre 1, 2 , Andre Terzic 4 , Lichun Lu 1, 2
Affiliation  

Conduits that promote nerve regeneration are currently of great medical concern, particularly when gaps exist between nerve endings. To address this issue, our laboratory previously developed a nerve conduit from biodegradable poly(caprolactone fumarate) (PCLF) that supports peripheral nerve regeneration. The present study improves upon this work by further developing an electrically conductive, positively charged PCLF scaffold through the incorporation of graphene, carbon nanotubes (CNTs), and [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (MTAC) (PCLF–Graphene–CNT–MTAC) using ultraviolet (UV) induced photocrosslinking. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy were used to assess the incorporation of CNTs and graphene into PCLF–Graphene–CNT–MTAC scaffolds, which displayed enhanced surface roughness and reduced electrochemical impedance when compared to neat PCLF. Scaffolds with these surface modifications also showed improved growth and differentiation of rat pheochromocytoma 12 cells in vitro, with enhanced cell growth, neurite extension, and cellular migration. Furthermore, an increased number of neurite protrusions were observed when the conduit was electrically stimulated. These results show that the electrically conductive PCLF–Graphene–CNT–MTAC nerve scaffolds presented here support the cellular behaviors that are critical for nerve regeneration, ultimately making this material an attractive candidate for regenerative medicine applications.

中文翻译:

在嵌入石墨烯和碳纳米管的导电支架上增强神经细胞增殖和分化。

促进神经再生的导管目前具有很大的医学意义,尤其是当神经末梢之间存在间隙时。为了解决这个问题,我们的实验室以前开发了一种支持周围神经再生的可生物降解聚(己内酯富马酸酯)(PCLF)的神经导管。本研究通过掺入石墨烯、碳纳米管 (CNT) 和 [2-(甲基丙烯酰氧基)乙基]三甲基氯化铵 (MTAC) (PCLF-Graphene-CNT) 进一步开发导电、带正电荷的 PCLF 支架,从而改进了这项工作–MTAC) 使用紫外线 (UV) 诱导的光交联。使用扫描电子显微镜、透射电子显微镜和原子力显微镜来评估 CNT 和石墨烯在 PCLF-Graphene-CNT-MTAC 支架中的掺入,与纯 PCLF 相比,它显示出增强的表面粗糙度和降低的电化学阻抗。具有这些表面修饰的支架还显示出体外大鼠嗜铬细胞瘤 12 细胞的生长和分化得到改善,细胞生长、轴突延伸和细胞迁移增强。此外,当导管受到电刺激时,观察到神经突突起的数量增加。这些结果表明,这里展示的导电 PCLF-石墨烯-CNT-MTAC 神经支架支持对神经再生至关重要的细胞行为,最终使这种材料成为再生医学应用的有吸引力的候选材料。具有这些表面修饰的支架还显示出体外大鼠嗜铬细胞瘤 12 细胞的生长和分化得到改善,细胞生长、轴突延伸和细胞迁移增强。此外,当导管受到电刺激时,观察到神经突突起的数量增加。这些结果表明,这里展示的导电 PCLF-石墨烯-CNT-MTAC 神经支架支持对神经再生至关重要的细胞行为,最终使这种材料成为再生医学应用的有吸引力的候选材料。具有这些表面修饰的支架还显示出体外大鼠嗜铬细胞瘤 12 细胞的生长和分化得到改善,细胞生长、轴突延伸和细胞迁移增强。此外,当导管受到电刺激时,观察到神经突突起的数量增加。这些结果表明,这里展示的导电 PCLF-石墨烯-CNT-MTAC 神经支架支持对神经再生至关重要的细胞行为,最终使这种材料成为再生医学应用的有吸引力的候选材料。
更新日期:2020-05-22
down
wechat
bug