当前位置: X-MOL 学术Geochemistry, Geophys. Geosystems › 论文详情
Multivariate statistical and multi‐proxy constraints on earthquake‐triggered sediment remobilization processes in the central Japan Trench
Geochemistry, Geophysics, Geosystems ( IF 2.946 ) Pub Date : 2020-05-22 , DOI: 10.1029/2019gc008861
T. Schwestermann; J. Huang; J. Konzett; A. Kioka; G. Wefer; K. Ikehara; J. Moernaut; T. I. Eglinton; M. Strasser

Understanding the impact of earthquakes on subaqueous environments is key for submarine paleoseismological investigations seeking to provide long‐term records of past earthquakes. For this purpose, event deposits (e.g., turbidites) are, amongst others, identified and stratigraphically correlated over broad areas to test for synchronous occurrence of gravity flows. Hence, detailed spatio‐temporal petrographic and geochemical fingerprints of such deposits are required to advance the knowledge about sediment source and the underlying remobilization processes induced by past earthquakes. In this study, we develop for the first time in paleoseismology a multivariate statistical approach using X‐ray fluorescence core scanning, magnetic susceptibility, and wet bulk density data that allow to test, confirm, and enhance the previous visual and litho‐stratigraphic correlation across two isolated basins in the central Japan Trench. The statistical correlation is further confirmed by petrographic heavy grain analysis of the turbidites and additionally combined with our novel erosion model based on previously reported bulk organic carbon 14C dates. We find surficial sediment remobilization, a process whereby strong seismic shaking remobilizes the uppermost few centimeters of surficial slope sediment, to be a predominant remobilization process, which partly initiates deeper sediment remobilization downslope during strong earthquakes at the Japan Trench. These findings shed new light on source‐to‐sink transport processes in hadal trenches during earthquakes and help to assess the completeness of the turbidite paleoseismic record. Our results further suggest that shallow‐buried tephra on the slope might significantly influence sediment remobilization and the geochemical and petrographic fingerprints of the resulting event deposits.
更新日期:2020-05-22

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug