当前位置: X-MOL 学术Geochemistry, Geophys. Geosystems › 论文详情
Understanding preservation of primary signatures in apatite by comparing matrix and zircon‐hosted crystals from the Eoarchean Acasta Gneiss Complex (Canada)
Geochemistry, Geophysics, Geosystems ( IF 2.946 ) Pub Date : 2020-05-22 , DOI: 10.1029/2020gc008923
C. Antoine; E. Bruand; M. Guitreau; J.‐L. Devidal

A novel way to investigate the petrogenesis of ancient poly‐metamorphosed terranes is to study zircon‐hosted mineral inclusions, which are sensitive to melt evolution such as apatite. Recent contributions on such inclusions in unmetamorphosed granitoids can provide valuable petrogenetic information and, in turn, represent a way to circumvent effects of metamorphism. Yet, the impact of metamorphism on apatite inclusion has never been studied in detail. To address the issue of chemical and isotopic preservation of primary signals in apatite crystals both in the matrix and armored within zircons, we have studied apatite crystals from four 3.6‐4.0 Ga TTG granitoids from the Acasta Gneiss Complex (Canada). Our results demonstrate that U‐Th‐Pb isotope systematics in matrix apatite crystals were reset at 1.8‐1.7 Ga (Wopmay orogen) whereas primary REE signatures were preserved in many crystals. In contrast, zircon‐hosted apatite inclusions all preserved primary REE signatures despite variable ages between 1.7 and 4.0 Ga. We interpret reset ages to be a consequence of metamorphism that managed to affect U‐Th‐Pb systematics because of advanced radiation damage accumulation in host‐zircon lattices. Only the most pristine zircon crystal has an apatite inclusion with a concordant age consistent with the magmatic age of the zircon (4.0 Ga). In addition, our results show that apatite crystals from TTG have distinct REE composition from post‐Archean granitoids apatites, that is preserved even in some apatites with reset ages. This capacity to retain primary information and discriminate granitoid types makes apatite a very valuable tool for reconstructing the nature and evolution of ancient crustal rocks through the use of detrital minerals.
更新日期:2020-05-22

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug