当前位置: X-MOL 学术Sci. Total Environ. › 论文详情
Pharmaceutical uptake kinetics in rainbow trout: In situ bioaccumulation in an effluent-dominated river influenced by snowmelt
Science of the Total Environment ( IF 5.589 ) Pub Date : 2020-05-22 , DOI: 10.1016/j.scitotenv.2020.139603
Jaylen L. Sims; S. Rebekah Burket; Marco E. Franco; Lea M. Lovin; Kendall R. Scarlett; Ruud Steenbeek; C. Kevin Chambliss; Craig Ashcroft; Michael Luers; Ramon Lavado; Bryan W. Brooks

Whether seasonal instream flow dynamics influence bioaccumulation of pharmaceuticals by fish is not well understood, specifically for urban lotic systems in semi-arid regions when flows are influenced by snowmelt. We examined uptake of select pharmaceuticals in rainbow trout (Oncorhynchus mykiss) caged in situ upstream and at incremental distances downstream (0.1, 1.4, 13 miles) from a municipal effluent discharge to East Canyon Creek in Park City, Utah, USA during summer and fall of 2018. Fish were sampled over 7-d to define uptake kinetics. Water and fish tissues were analyzed via isotope dilution liquid chromatography tandem mass spectrometry. Several pharmaceuticals were consistently detected in water, fish tissue and plasma, including carbamazepine, diphenhydramine, diltiazem, and fluoxetine. Pharmaceutical levels in water ranged up to 151 ng/L for carbamazepine, whereas the effluent tracer sucralose was consistently observed at low μg/L levels. During both summer and fall experiments at each of three downstream locations from effluent discharge, rainbow trout rapidly accumulated these pharmaceuticals; tissue levels reached steady state conditions within 24–96 h. Spatial and temporal differences for pharmaceutical levels in rainbow trout directly corresponded with surface water exposure concentrations, and uptake kinetics for individual pharmaceuticals did not vary among sites or seasons. Such observations are consistent with recent laboratory bioconcentration studies, which collectively indicate inhalational exposure from water governs rapid accumulation of ionizable base pharmaceuticals by fish in inland surface waters.
更新日期:2020-05-22

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug