当前位置: X-MOL 学术Sci. Total Environ. › 论文详情
Biofilm inhibition effect of an ivermectin/silyl acrylate copolymer coating and the colonization dynamics
Science of the Total Environment ( IF 5.589 ) Pub Date : 2020-05-22 , DOI: 10.1016/j.scitotenv.2020.139599
Chao Liu; Binghua Yan; Jizhou Duan; Baorong Hou

Ivermectin is now being used as a substitute for toxic organic biocide in marine antifouling coatings due to its environmentally friendly nature and the efficacy against parasites. However, the release performance of ivermectin from the hydrolyzed acrylic-based resin into the seawater is not clear. Moreover, the efficiency and mechanism of ivermectin in preventing biofilm or slime formation have not been fully investigated. In this study, a coating was developed by mixing ivermectin with an acrylic-based resin, silyl acrylate copolymer, and a 45-day in situ antifouling test was conducted in the Yellow Sea. Direct observation and confocal microscope investigation indicated that the polymer coating with ivermectin was effective against biofilm formation. High-throughput sequencing analysis showed that ivermectin can selectively inhibit the adhesion of microorganisms. Abundances of Gammaproteobacteria and Alphaproteobacteria decreased significantly with the increased concentration of ivermectin. As for the eukaryote community, species of Stolidobranchia and unidentified_Bacillariophyceae were proved to be sensitive to ivermectin. Therefore, the ivermectin/silyl acrylate copolymer coating is a promising substitute for marine antifouling material.
更新日期:2020-05-22

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug