当前位置: X-MOL 学术J. Rare Earths › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of Sm-doping on microstructure, magnetic and microwave absorption properties of BiFeO3
Journal of Rare Earths ( IF 4.9 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.jre.2020.05.003
Chuang Tian , Qingrong Yao , Zhaofei Tong , Huaiying Zhou , Guanghui Rao , Jianqiu Deng , Zhongmin Wang , Jiang Wang

Abstract In this paper, polycrystalline samples of Bi1–xSmxFeO3 (x = 0, 0.05, 0.1, 0.15) were successfully synthesized by sol-gel method. The effects of Sm concentration on the crystal structure, morphology, chemical states, magnetic properties and microwave absorption performance were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), a vibrating sample magnetometer (VSM) and a Vector network analyzer (VNA), respectively. The results show that the rare earth Sm doping causes the crystal structure to change. When x ≤ 0.1, Bi1–xSmxFeO3 is the distorted rhombohedral structure with space group R3c. With the increase of Sm doping amount to x = 0.15, the phase structure of Bi1–xSmxFeO3 changes from rhombohedral structure to cubic structure with the space group Pm 3 ¯ m. The particle size decreases with the increase of the Sm doping amount. The analysis results show that Sm doping can effectively reduce the oxygen vacancies and significantly improve its magnetic properties. The results exhibit that moderately doped rare earth Sm element can effectively improve microwave absorption properties of Bi1–xSmxFeO3 powders. When Sm doping amount of x is 0.1, the Bi0.9Sm0.1FeO3 compound has good microwave absorption performance, and the minimum reflection loss value of Bi0.9Sm0.1FeO3 powder reaches about −32.9 dB at 11.7 GHz, and its effective absorption bandwidth (RL

中文翻译:

Sm掺杂对BiFeO3微观结构、磁性和微波吸收性能的影响

摘要 本文采用溶胶-凝胶法成功合成了Bi1–xSmxFeO3 (x = 0, 0.05, 0.1, 0.15)多晶样品。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子学研究了Sm浓度对晶体结构、形貌、化学状态、磁性和微波吸收性能的影响。光谱仪 (XPS)、振动样品磁强计 (VSM) 和矢量网络分析仪 (VNA)。结果表明,稀土Sm掺杂导致晶体结构发生变化。当 x ≤ 0.1 时,Bi1–xSmxFeO3 是空间群为 R3c 的扭曲菱形结构。随着 Sm 掺杂量增加到 x = 0.15,Bi1–xSmxFeO3 的相结构从菱面体结构变为立方体结构,空间群为 Pm 3 ¯ m。粒径随着Sm掺杂量的增加而减小。分析结果表明,Sm掺杂可以有效减少氧空位,显着提高其磁性能。结果表明,适度掺杂稀土 Sm 元素可以有效提高 Bi1-xSmxFeO3 粉末的微波吸收性能。当x的Sm掺杂量为0.1时,Bi0.9Sm0.1FeO3化合物具有良好的微波吸收性能,Bi0.9Sm0.1FeO3粉体的最小反射损耗值在11.7 GHz时达到-32.9 dB左右,其有效吸收带宽(强化学习 分析结果表明,Sm掺杂可以有效减少氧空位,显着提高其磁性能。结果表明,适度掺杂稀土 Sm 元素可以有效提高 Bi1-xSmxFeO3 粉末的微波吸收性能。当x的Sm掺杂量为0.1时,Bi0.9Sm0.1FeO3化合物具有良好的微波吸收性能,Bi0.9Sm0.1FeO3粉体的最小反射损耗值在11.7 GHz时达到-32.9 dB左右,其有效吸收带宽(强化学习 分析结果表明,Sm掺杂可以有效减少氧空位,显着提高其磁性能。结果表明,适度掺杂稀土 Sm 元素可以有效提高 Bi1-xSmxFeO3 粉末的微波吸收性能。当x的Sm掺杂量为0.1时,Bi0.9Sm0.1FeO3化合物具有良好的微波吸收性能,Bi0.9Sm0.1FeO3粉体的最小反射损耗值在11.7 GHz时达到-32.9 dB左右,其有效吸收带宽(强化学习
更新日期:2020-05-01
down
wechat
bug