当前位置: X-MOL 学术Radiat. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of Alanine Measurements for Fast and Accurate Dosimetry in FLASH Radiation Therapy.
Radiation Research ( IF 3.4 ) Pub Date : 2020-05-20 , DOI: 10.1667/rr15568.1
Maude Gondré 1 , Patrik Gonçalves Jorge 1 , Marie-Catherine Vozenin 2 , Jean Bourhis 2 , François Bochud 1 , Claude Bailat 1 , Raphaël Moeckli 1
Affiliation  

FLASH radiation therapy (FLASH-RT) reference dosimetry to obtain traceability, repeatability and stability of irradiations cannot be performed with conventional dosimetric methods, such as monitor chambers or ionization chambers. Until now, only passive dosimeters have provided the necessary dosimetric data. Alanine dosimetry is accurate; however, to be used for FLASH-RT in biological experiments and for clinical transfer to humans, the reading time needs to be reduced, while preserving a maximum deviation to the reference of ±2%. Optimization of alanine dosimetry was based on the acquisition of electron paramagnetic resonance (EPR) spectra with a Bruker spectrometer. Reading parameters such as the conversion time, the number of scans, the time constant, the microwave power and the modulation amplitude of the magnetic field were optimized as a trade-off between the signal-to-noise ratio (SNR) and the reading time of one measurement using the reference 10.1 Gy alanine pellet. After optimizing the parameters, we compared the doses measured with alanine pellets up to 100 Gy with the reference doses, and then determined the number of measurements necessary to get a difference lower than ±2%. A low-dose alanine pellet of 4.9 Gy was also measured to evaluate the quality of the optimization for doses lower than 10 Gy. The optimization of the Bruker default parameters made it possible to reduce the reading time for one measurement from 5.6 to 2.6 min. That reduction was not at the cost of the SNR because it was kept comparable to the default parameters. Three measurements were enough to obtain a maximum dose deviation to the reference of 1.8% for the range of 10–100 Gy. The total reading time for the three measurements was 7.8 min (3 × 2.6 min). For lower doses such as 4.9 Gy, three measurements led to a deviation greater than 5%. By increasing the number of measurements to five, the average difference to the reference dose was reduced to less than 5% with a total reading time increased to 13.0 min. For doses between 10 Gy and 100 Gy, the optimized acquisition parameters made it possible to keep the average differences between the reference and the measured doses below ±2%, for a reading time of 7.8 min. This enabled an accurate and fast dose determination for biological preparations as part of FLASH-beam irradiations.



中文翻译:

FLASH 放射治疗中快速准确剂量测定的丙氨酸测量优化。

FLASH 放射治疗 (FLASH-RT) 参考剂量测定法无法使用常规剂量测定方法(例如监测室或电离室)来获得辐照的可追溯性、可重复性和稳定性。到目前为止,只有无源剂量计提供了必要的剂量学数据。丙氨酸剂量测定准确;然而,要用于生物实验中的 FLASH-RT 和临床转移到人体,需要减少读取时间,同时保持与参考的最大偏差 ±2%。丙氨酸剂量测定的优化基于使用布鲁克光谱仪获得的电子顺磁共振 (EPR) 光谱。读取转换时间、扫描次数、时间常数等参数,使用参考 10.1 Gy 丙氨酸颗粒进行一次测量的信噪比 (SNR) 和读取时间之间的权衡,对微波功率和磁场的调制幅度进行了优化。在优化参数后,我们将高达 100 Gy 的丙氨酸颗粒测量的剂量与参考剂量进行了比较,然后确定了使差异低于 ±2% 所需的测量次数。还测量了 4.9 Gy 的低剂量丙氨酸颗粒,以评估低于 10 Gy 剂量的优化质量。布鲁克默认参数的优化使得一次测量的读数时间从 5.6 分钟减少到 2.6 分钟成为可能。这种降低不会以 SNR 为代价,因为它与默认参数保持可比性。在 10-100 Gy 的范围内,三次测量足以获得与参考值 1.8% 的最大剂量偏差。三个测量的总读数时间为 7.8 分钟(3 × 2.6 分钟)。对于 4.9 Gy 等较低剂量,三次测量导致偏差大于 5%。通过将测量次数增加到五次,与参考剂量的平均差异减少到小于 5%,总读取时间增加到 13.0 分钟。对于 10 Gy 和 100 Gy 之间的剂量,优化的采集参数可以将参考剂量和测量剂量之间的平均差异保持在 ±2% 以下,读取时间为 7.8 分钟。作为 FLASH 束辐照的一部分,这使得能够准确快速地确定生物制剂的剂量。三个测量的总读数时间为 7.8 分钟(3 × 2.6 分钟)。对于较低的剂量,例如 4.9 Gy,三次测量导致偏差大于 5%。通过将测量次数增加到五次,与参考剂量的平均差异减少到小于 5%,总读取时间增加到 13.0 分钟。对于 10 Gy 和 100 Gy 之间的剂量,优化的采集参数可以将参考剂量和测量剂量之间的平均差异保持在 ±2% 以下,读取时间为 7.8 分钟。作为 FLASH 束辐照的一部分,这使得能够准确快速地确定生物制剂的剂量。三个测量的总读数时间为 7.8 分钟(3 × 2.6 分钟)。对于较低的剂量,例如 4.9 Gy,三次测量导致偏差大于 5%。通过将测量次数增加到五次,与参考剂量的平均差异减少到小于 5%,总读取时间增加到 13.0 分钟。对于 10 Gy 和 100 Gy 之间的剂量,优化的采集参数可以将参考剂量和测量剂量之间的平均差异保持在 ±2% 以下,读取时间为 7.8 分钟。作为 FLASH 束辐照的一部分,这使得能够准确快速地确定生物制剂的剂量。通过将测量次数增加到五次,与参考剂量的平均差异减少到小于 5%,总读取时间增加到 13.0 分钟。对于 10 Gy 和 100 Gy 之间的剂量,优化的采集参数可以将参考剂量和测量剂量之间的平均差异保持在 ±2% 以下,读取时间为 7.8 分钟。作为 FLASH 束辐照的一部分,这使得能够准确快速地确定生物制剂的剂量。通过将测量次数增加到五次,与参考剂量的平均差异减少到小于 5%,总读取时间增加到 13.0 分钟。对于 10 Gy 和 100 Gy 之间的剂量,优化的采集参数可以将参考剂量和测量剂量之间的平均差异保持在 ±2% 以下,读取时间为 7.8 分钟。作为 FLASH 束辐照的一部分,这使得能够准确快速地确定生物制剂的剂量。

更新日期:2020-05-20
down
wechat
bug