当前位置: X-MOL 学术Mol. Plant Microbe Interact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Camellia Plant Resistance and Susceptibility to Petal Blight Disease Are Defined by the Timing of Defense Responses.
Molecular Plant-Microbe Interactions ( IF 3.5 ) Pub Date : 2020-05-20 , DOI: 10.1094/mpmi-10-19-0304-r
Nikolai Kondratev 1, 2 , Matthew Denton-Giles 1 , Rosie E Bradshaw 1, 2 , Murray P Cox 1, 2 , Paul P Dijkwel 1, 2
Affiliation  

The family Sclerotiniaceae includes important phytopathogens, such as Botrytis cinerea and Sclerotinia sclerotiorum, that activate plant immune responses to facilitate infection propagation. The mechanisms of plant resistance to these necrotrophic pathogens are still poorly understood. To discover mechanisms of resistance, we used the Ciborinia camelliae (Sclerotiniaceae)-Camellia spp. pathosystem. This fungus induces rapid infection of the blooms of susceptible cultivar Nicky Crisp (Camellia japonica × Camellia pitardii var. pitardii), while Camellia lutchuensis is highly resistant. Genome-wide analysis of gene expression in resistant plants revealed fast modulation of host transcriptional activity 6 h after ascospore inoculation. Ascospores induced the same defense pathways in the susceptible Camellia cultivar but much delayed and coinciding with disease development. We next tested the hypothesis that differences in defense timing influences disease outcome. We induced early defense in the susceptible cultivar using methyl jasmonate and this strongly reduced disease development. Conversely, delaying the response in the resistant species, by infecting it with actively growing fungal mycelium, increased susceptibility. The same plant defense pathways, therefore, contribute to both resistance and susceptibility, suggesting that defense timing is a critical factor in plant health, and resistance against necrotrophic pathogens may occur during the initial biotrophy-like stages.

中文翻译:

茶花植物的抗性和对花瓣枯萎病的易感性由防御反应的时间决定。

菌核科包括重要的植物病原体,例如灰葡萄孢(Botrytis cinerea)和菌核盘菌(Sclerotiania sclerotiorum),它们激活植物的免疫反应以促进感染的传播。植物对这些坏死性病原体的抗性机制仍知之甚少。为了发现抗药性的机制,我们使用了Ciborinia camelliae(Sclerotiniaceae)-Camellia spp。病理系统。这种真菌引起易感品种Nicky Crisp(山茶花×山茶花变种pitardii)的花的快速感染,而山茶花则具有很高的抗性。抗性植物中基因表达的全基因组分析显示,在孢子孢子接种后6小时,宿主转录活性快速调节。子囊孢子在易感的茶花品种中诱导了相同的防御途径,但大大延迟并与疾病的发展相吻合。接下来,我们测试了防御时机差异会影响疾病结果的假设。我们使用茉莉酸甲酯诱导了易感品种的早期防御,这大大降低了疾病的发展。相反,通过用活跃生长的真菌菌丝体感染抗性物种来延迟其反应,则增加了敏感性。因此,相同的植物防御途径同时促进了抗性和敏感性,这表明防御时机是植物健康的关键因素,并且对坏死性病原体的抗性可能在最初的生物营养样阶段出现。接下来,我们检验了防御时机差异会影响疾病结果的假设。我们使用茉莉酸甲酯诱导了易感品种的早期防御,这大大降低了疾病的发展。相反,通过用活跃生长的真菌菌丝体感染抗性物种来延迟其反应,则增加了敏感性。因此,相同的植物防御途径同时促进了抗性和敏感性,这表明防御时机是植物健康的关键因素,而对坏死性病原体的抗性可能在最初的生物营养样阶段出现。接下来,我们测试了防御时机差异会影响疾病结果的假设。我们使用茉莉酸甲酯诱导了易感品种的早期防御,这大大降低了疾病的发展。相反,通过用活跃生长的真菌菌丝体感染抗性物种来延迟其反应,则增加了敏感性。因此,相同的植物防御途径同时促进了抗性和敏感性,这表明防御时机是植物健康的关键因素,而对坏死性病原体的抗性可能在最初的生物营养样阶段出现。通过积极生长的真菌菌丝体感染它,增加了敏感性。因此,相同的植物防御途径同时促进了抗性和敏感性,这表明防御时机是植物健康的关键因素,而对坏死性病原体的抗性可能在最初的生物营养样阶段出现。通过用活跃生长的真菌菌丝体感染它,增加了敏感性。因此,相同的植物防御途径同时促进了抗性和敏感性,这表明防御时机是植物健康的关键因素,并且对坏死性病原体的抗性可能在最初的生物营养样阶段出现。
更新日期:2020-05-20
down
wechat
bug