当前位置: X-MOL 学术J. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Materials Science in the time of Coronavirus
Journal of Materials Science ( IF 4.5 ) Pub Date : 2020-05-11 , DOI: 10.1007/s10853-020-04694-4
Annela M Seddon 1
Affiliation  

Before 2020, phrases such as ‘‘social distancing’’ and ‘‘lock down’’ were not part of our normal vocabulary; however, it seems now that they are at the core of every conversation. We scientists naturally look to see where we might be best placed to help as we start to piece together what this new normal means for us. Tackling a problem of the magnitude of a global pandemic cannot be undertaken by a single discipline. At this point, while we are still in the early stages of this crisis, where emergency medical care and reducing pressure on health services are the priority, we look to our clinicians, epidemiologists, and experts in the biomedical sciences for frontline solutions. However, we must think more broadly about the role of materials science. Traditionally, when we think about ‘‘viral infection’’ our thoughts first turn to vaccines. After all, these have been arguably one the most successful public health interventions in human history, rendering what were once fatal or seriously debilitating diseases a thing of the past thanks to a simple course of inoculations. They will always remain the heavy artillery in our fight against viruses; however, in the situation we face at present, a vaccine against COVID-19 remains some way into the future. What then of antiviral agents? Over the last 50 years, more than 90 drugs have been approved as antivirals, yet these target only nine human infectious diseases [1]. It is tempting to think that the development of new antiviral agents is beyond the scope of what we traditionally call materials science, yet the scientific literature belies this view, where the impact can be had is in the development of new delivery vectors which enhance the properties of existing antiviral agents, such as their pharmacokinetics, and reduce unwanted side effects. One of the contributions from materials and chemistry is covered in an Invited Viewpoint in this issue [2]. There is a startling array of different materials which have been employed, each with a different potential benefit. Recent work by Jones et al. [3] demonstrated nontoxic, broad-spectrum antiviral cyclodextrins (a type of cyclic sugar), modified with mercaptoundecane sulfonic acids, which were shown to be virucidal at micromolar concentrations in vitro against a range of viruses including herpes simplex

中文翻译:

冠状病毒时代的材料科学

在 2020 年之前,诸如“保持社交距离”和“封锁”之类的短语不是我们正常词汇的一部分;但是,现在看来,它们是每次对话的核心。当我们开始拼凑这种新常态对我们意味着什么时,我们科学家自然会寻找最适合我们帮助的地方。解决全球大流行规模的问题不能由单一学科来承担。在这一点上,虽然我们仍处于这场危机的早期阶段,紧急医疗护理和减轻卫生服务压力是首要任务,但我们期待我们的临床医生、流行病学家和生物医学科学专家寻求一线解决方案。然而,我们必须更广泛地思考材料科学的作用。传统上,当我们想到“病毒感染”时,我们首先会想到疫苗。毕竟,这些可以说是人类历史上最成功的公共卫生干预措施之一,通过简单的接种过程,使曾经致命或严重衰弱的疾病成为过去。他们永远是我们抗击病毒的重炮;然而,在我们目前面临的情况下,针对 COVID-19 的疫苗在未来还有一段路要走。那么抗病毒药物呢?在过去的 50 年中,已有 90 多种药物被批准为抗病毒药物,但这些药物仅针对 9 种人类传染病 [1]。人们很容易认为新抗病毒剂的开发超出了我们传统上所谓的材料科学的范围,但科学文献掩盖了这种观点,可以产生影响的地方在于开发新的递送载体,以增强现有抗病毒药物的特性,例如它们的药代动力学,并减少不需要的副作用。本期的特邀观点 [2] 涵盖了材料和化学的贡献之一。已经使用了一系列令人吃惊的不同材料,每种材料都有不同的潜在好处。Jones 等人最近的工作。[3] 证明了无毒、广谱抗病毒环糊精(一种环状糖),经巯基十一烷磺酸修饰,在体外对包括单纯疱疹在内的一系列病毒具有微摩尔浓度的杀病毒作用 本期的特邀观点 [2] 涵盖了材料和化学的贡献之一。已经使用了一系列令人吃惊的不同材料,每种材料都有不同的潜在好处。Jones 等人最近的工作。[3] 证明了无毒、广谱抗病毒环糊精(一种环状糖),经巯基十一烷磺酸修饰,在体外对包括单纯疱疹在内的一系列病毒具有微摩尔浓度的杀病毒作用 本期的特邀观点 [2] 涵盖了材料和化学的贡献之一。已经使用了一系列令人吃惊的不同材料,每种材料都有不同的潜在好处。Jones 等人最近的工作。[3] 证明了无毒、广谱抗病毒环糊精(一种环状糖),经巯基十一烷磺酸修饰,在体外对包括单纯疱疹在内的一系列病毒具有微摩尔浓度的杀病毒作用
更新日期:2020-05-11
down
wechat
bug