当前位置: X-MOL 学术Biomech. Model. Mechanobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comprehensive analysis of bio-inspired design of femoral stem on primary and secondary stabilities using mechanoregulatory algorithm.
Biomechanics and Modeling in Mechanobiology ( IF 3.5 ) Pub Date : 2020-05-09 , DOI: 10.1007/s10237-020-01334-3
Hassan Mehboob 1 , Furqan Ahmad 2 , Faris Tarlochan 3 , Ali Mehboob 4 , Seung Hwan Chang 4
Affiliation  

The coated porous section of stem surface is initially filled with callus that undergoes osseointegration process, which develops a bond between stem and bone, lessens the micromotions and transfers stresses to the bone, proximally. This phenomenon attributes to primary and secondary stabilities of the stems that exhibit trade-off the stem stiffness. This study attempts to ascertain the influence of stem stiffness on peri-prosthetic bone formation and stress shielding when in silico models of solid CoCr alloy and Ti alloy stems, and porous Ti stems (53.8 GPa and 31.5 GPa Young’s moduli) were implanted. A tissue differentiation predictive mechanoregulation algorithm was employed to estimate the evolutionary bond between bone and stem interfaces with 0.5-mm- and 1-mm-thick calluses. The results revealed that the high stiffness stems yielded higher stress shielding and lower micromotions than that of low stiffness stems. Contrarily, bone formation around solid Ti alloy stem and porous Ti 53.8 GPa stem was augmented in 0.5-mm- and 1-mm-thick calluses, respectively. All designs of stems exhibited different rates of bone formation, diverse initial micromotions and stress shielding; however, long-term bone formation was coherent with different stress shielding. Therefore, contemplating the secondary stability of the stems, low stiffness stem (Ti 53.8 GPa) gave superior biomechanical performance than that of high stiffness stems.



中文翻译:

使用机械调节算法对股骨柄仿生设计对初级和次级稳定性的综合分析。

茎表面的涂层多孔部分最初充满了愈伤组织,这些愈伤组织经历了骨整合过程,在茎和骨骼之间形成了结合,减少了微动并将应力传递到近端的骨骼。这种现象归因于茎的主要和次要稳定性,它们表现出茎刚度的权衡。本研究试图确定植入固体钴铬合金和钛合金柄以及多孔钛柄(53.8 GPa 和 31.5 GPa 杨氏模量)的硅模型时,柄刚度对假体周围骨形成和应力屏蔽的影响。采用组织分化预测机械调节算法来估计具有 0.5 毫米和 1 毫米厚愈伤组织的骨和茎界面之间的进化键。结果表明,与低刚度阀杆相比,高刚度阀杆产生更高的应力屏蔽和更低的微动。相反,实心钛合金柄和多孔钛 53.8 GPa 柄周围的骨形成分别在 0.5 毫米和 1 毫米厚的老茧中增加。所有设计的茎都表现出不同的骨形成率、不同的初始微动和应力屏蔽;然而,长期骨形成与不同的应力屏蔽相一致。因此,考虑到茎的二次稳定性,低刚度茎 (Ti 53.8 GPa) 比高刚度茎具有更好的生物力学性能。分别。所有设计的茎都表现出不同的骨形成率、不同的初始微动和应力屏蔽;然而,长期骨形成与不同的应力屏蔽相一致。因此,考虑到茎的二次稳定性,低刚度茎 (Ti 53.8 GPa) 比高刚度茎具有更好的生物力学性能。分别。所有设计的茎都表现出不同的骨形成率、不同的初始微动和应力屏蔽;然而,长期骨形成与不同的应力屏蔽相一致。因此,考虑到茎的二次稳定性,低刚度茎 (Ti 53.8 GPa) 比高刚度茎具有更好的生物力学性能。

更新日期:2020-05-09
down
wechat
bug