当前位置: X-MOL 学术Science › 论文详情
Solitons and topological waves.
Science ( IF 41.037 ) Pub Date : 2020-05-22 , DOI: 10.1126/science.abb5162
Mark J Ablowitz,Justin T Cole

The intense coherent emission from lasers enabled the study of light propagation in nonlinear media, which spurred many important applications. More recently, the study of electromagnetic wave propagation in periodic media, where linear band structures play an important role, has advanced in new directions. By breaking certain symmetries, such as time reversal, the medium can support so-called “topologically protected” modes that possess uncommon robustness to material defects. Theory has suggested that certain nonlinear waves can inherit the topology of associated linear waves. On page 856 of this issue, Mukherjee and Rechtsman (1) describe experiments where such nonlinear waves, called solitons, can now be observed in the bulk of photonic topological media. These localized waves exhibit cyclotronic motion as the light propagates down a specifically engineered waveguide. When a different mode is considered—one with trivial topology—the waves no longer circulate but remain essentially fixed in their initial spatial distribution.
更新日期:2020-05-21

 

全部期刊列表>>
Springer化学材料学
骄傲月
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug