当前位置: X-MOL 学术Geochemistry, Geophys. Geosystems › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Linking Subsurface to Surface Using Gas Emission and Melt Inclusion Data at Mount Cleveland Volcano, Alaska
Geochemistry, Geophysics, Geosystems ( IF 4.480 ) Pub Date : 2020-05-21 , DOI: 10.1029/2019gc008882
C. Werner 1, 2 , D. J. Rasmussen 3, 4 , T. Plank 3 , P. J. Kelly 1 , C. Kern 1 , T. Lopez 5 , J. Gliss 6 , J. A. Power 7 , D. C. Roman 8 , P. Izbekov 5 , J. Lyons 7
Affiliation  

Mount Cleveland is one of Alaska's most active volcanoes, yet little is known about the magmatic system driving persistent and dynamic volcanic activity. Volcanic gas and melt inclusion (MI) data from 2016 were combined to investigate shallow magmatic processes. SO2 emission rates were between 166 and 324 t/day and the H2O/SO2 was 600 ± 53, whereas CO2 and H2S were below detection. Olivine‐, clinopyroxene‐, and plagioclase‐hosted MIs have up to 3.8 wt.% H2O, 514 ppm CO2, and 2,320 ppm S. Equilibration depths, based on MI H2O contents, suggest that a magmatic column extended from 0.5 to 3.0 km (~10–60 MPa). We used MI data to empirically model open‐system H‐C‐S degassing from 0 to 12 km and found that a column of magma between 0.5 and 3 km could produce the measured gas H2O/SO2 ratio. However, additional magma deeper than 3 km is required to sustain emissions over periods greater than days to weeks, if the observed vent dimension is a valid proxy for the conduit. Assuming an initial S content of 2,320 ppm, the total magma supply needed to sustain the annual SO2 flux was 5 to 9.8 Mm3/yr, suggesting a maximum intrusive‐to‐extrusive ratio of 13:1. The model predicts degassing of <50 t/day CO2 for July 2016, which corresponds to a maximum predicted CO2/SO2 of 0.2. Ultimately, frequent recharge from deeper, less degassed magma is required to drive the continuous activity observed over multiple years. During periods of recharge we would expect lower H2O/SO2 and measurable volcanic CO2.

中文翻译:

使用阿拉斯加克利夫兰火山的气体排放和熔体包裹体数据将地下与地面联系起来

克利夫兰山是阿拉斯加最活跃的火山之一,但对于驱动持续和动态火山活动的岩浆系统知之甚少。结合2016年的火山岩气和熔体夹杂物(MI)数据,研究了浅岩浆过程。SO 2排放速率在166至324 t / day之间,H 2 O / SO 2为600±53,而CO 2和H 2 S低于检测值。橄榄石,斜茂铁和斜长石溶解的MI具有高达3.8 wt。%H 2 O,514 ppm CO 2和2,320 ppm S的平衡。基于MI H 2的平衡深度O含量,表明岩浆柱从0.5 km延伸到3.0 km(〜10-60 MPa)。我们使用MI数据对0到12 km的开放系统H–C–S脱气进行了经验建模,发现在0.5至3 km之间的岩浆柱可以产生测得的H 2 O / SO 2气体比率。但是,如果观察到的通风口尺寸可以有效替代导管,则需要超过3 km的岩浆才能在超过几天到几周的时间内承受排放。假设最初的S含量为2,320 ppm,则维持每年的SO 2通量所需的总岩浆供应量为5至9.8 Mm 3 / yr,这表明最大的侵入与挤压比为13:1。该模型预测脱气<50吨/天CO 2为2016年7月,这对应于最大预测CO 2 / SO 2为0.2。最终,需要从深层,脱气少的岩浆中进行频繁的补给,以驱动多年以来观察到的持续活动。在补给期间,我们预计H 2 O / SO 2会降低,而火山CO 2会被测量
更新日期:2020-07-16
down
wechat
bug