当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Time suboptimal formation flying manoeuvres through improved magnetic charged system search
Advances in Space Research ( IF 1.746 ) Pub Date : 2020-05-21 , DOI: 10.1016/j.asr.2020.05.013
Andrea D’Ambrosio; Dario Spiller; Fabio Curti

The development of fast and reliable optimization algorithms is required in order to obtain real-time optimal trajectory on-board spacecraft. In addition, the wide spread of small satellites, due to their low costs, is leading to a greater number of satellite formations in space. This paper presents an Improved version of the Magnetic Charged System Search (IMCSS) metaheuristic algorithm to compute time-suboptimal manoeuvres for satellite formation flying. The proposed algorithm exploits some strategies aimed at improving the convergence to the optimum, such as the chaotic local search and the boundary handling technique, and it is able to self-tune its internal parameters and coefficients. Moreover, the inverse dynamics technique and the differential flatness approach, through the B-splines curves, are used to approximate the trajectory. The optimization procedure is applied to the circular J2 relative model developed by Schweighart and Sedwick and to the elliptical relative motion model developed by Yamanaka and Ankersen. The results of this paper show that the convergence is better achieved by using the proposed tools, thus proving the efficiency and reliability of the algorithm in solving some space engineering problems.
更新日期:2020-05-21

 

全部期刊列表>>
Springer化学材料学
骄傲月
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug