当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Use of GNSS for lunar missions and plans for Lunar In-Orbit Development
Advances in Space Research ( IF 1.746 ) Pub Date : 2020-05-21 , DOI: 10.1016/j.asr.2020.05.018
Anaïs Delépaut; Pietro Giordano; Javier Ventura-Traveset; Daniel Blonski; Miriam Schönfeldt; Philippe Schoonejans; Sarmad Aziz; Roger Walker

In the context of Deep Space Exploration as planned by the International Space Exploration Coordination Group (ISECG), the Moon represents a significant step to feed forward what could be done on Mars. Navigation is a key-technology to enable the cis-lunar and lunar volume discovery. The use of Earth Global Navigation Satellite System (GNSS) signals at Moon altitude has been extensively studied in the past, within and outside the European Space Agency (ESA). Namely, this interest has been reflected in “The Interoperable Global Navigation Satellite Systems Space Service Volume” booklet issued by the International Committee on GNSS (ICG) in 2018 (United Nations - Office for Outer Space Affairs, 2018). However, the main limitation on accurately performing this kind of analysis has always been the limited knowledge of the actual GNSS transmit antenna patterns outside the main lobe, i.e. side-lobes. ESA published the first patterns of GPS satellites using data collected in GIOVE-A (Unwin, et al., 2013) and, more recently, the National Aeronautics and Space Administration (NASA) shared very detailed 3D patterns of all GPS Blocks (Donaldson, et al., 2018). This allows both ESA and NASA to perform detailed analysis of the expected visibility of GNSS signals at moon altitude. In particular, NASA published visibility results using a GPS-only receiver in a Moon Transfer Orbit (MTO) demonstrating the potential of GPS-based navigation up to the Moon (considering signals above 22 dB-Hz with a 14dBi antenna) (Ashman, 2018). In particular, the present paper presents the results of numerical simulations for a Single-Frequency (SF) receiver in the Deep Space Gateway (DSG) orbit, which is an Earth-Moon L2 Halo orbit, using both Galileo and GPS, for which detailed 3D antenna patterns were used. It demonstrates the importance of considering the azimuthal asymmetry of the GNSS antenna patterns and the necessity of using an interoperable Galileo-GPS receiver at such altitudes. Additionally, a comparative analysis between the frequency bands E1/L1 and E5a/L5 is performed to select the one providing the best results. In conclusion, it shows that a high number of satellites is visible at Moon altitude using a receiver with a 14dBi antenna and a 15 dB-Hz Carrier-to-Noise-density acquisition and tracking threshold. Finally, the second part of the paper will provide ESA plans for In-Orbit Demonstration (IOD) of the use of GNSS at Moon altitude, covering both CubeSat missions and the DSG.
更新日期:2020-05-21

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug