当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum erasure using entangled surface acoustic phonons
Physical Review X ( IF 12.5 ) Pub Date : 
A. Bienfait, Y. P. Zhong, H. -S. Chang, M. -H. Chou, C. R. Conner, É . Dumur, J. Grebel, G. A. Peairs, R. G. Povey, K. J. Satzinger, A. N. Cleland

Using the deterministic, on-demand generation of two entangled phonons, we demonstrate a quantum eraser protocol in a phononic interferometer where the which-path information can be heralded during the interference process. Omitting the heralding step yields a clear interference pattern in the interfering half-quanta pathways; including the heralding step suppresses this pattern. If we erase the heralded information the interference has been measured, the interference pattern is recovered, thereby implementing a delayed-choice quantum erasure. The test is implemented using a closed surface-acoustic-wave communication channel into which one superconducting qubit can emit itinerant phonons that the same or a second qubit can later re-capture. If the first qubit releases only half of a phonon, the system follows a superposition of paths during the phonon propagation: either an itinerant phonon is in the channel, or the first qubit remains in its excited state. These two paths are made to constructively or destructively interfere by changing the relative phase of the two intermediate states, resulting in a phase-dependent modulation of the first qubit’s final state, following interaction with the half-phonon. A heralding mechanism is added to this construct, entangling a heralding phonon with the signalling phonon. The first qubit emits a phonon herald conditioned on the qubit being in its excited state, with no signaling phonon, and the second qubit catches this heralding phonon, storing which-path information which can either be read out, destroying the signaling phonon’s self-interference, or erased.

中文翻译:

使用纠缠的表面声子进行量子擦除

使用确定性的按需生成的两个纠缠声子,我们在声子干涉仪中演示了一种量子擦除器协议,其中在干涉过程中可以预示哪个路径信息。省略预示步骤可在干扰的半量子途径中产生清晰的干扰模式。包括预示步骤可以抑制这种模式。如果我们删除先驱信息,则已经测量了干扰,则干扰模式将恢复,从而实现了延迟选择量子擦除。该测试是使用封闭的表面声波通信通道执行的,一个超导量子比特可以向其中发射出巡回声子,而相同或另一个量子比特随后可以重新捕获该声子。如果第一个量子位仅释放声子的一半,在声子传播期间,系统遵循路径的叠加:流动声子在通道中,或者第一个量子位保持在其激发态。通过改变两个中间状态的相对相位,可以使这两个路径相长或相消地进行干涉,从而在与半声子相互作用之后,对第一量子位的最终状态进行依赖于相位的调制。将先驱机制添加到此构造中,使先驱声子与信号声子纠缠。第一个量子比特发出一个以量子比特处于激发态为条件的声子先驱,没有信号声子,第二个量子比特捕获了这个先驱声子,存储了可以被读出的路径信息,破坏了信号声子的自干扰。 ,或删除。通道中有流动的声子,或者第一个量子比特保持其激发态。通过改变两个中间状态的相对相位,可以使这两个路径相长或相消地进行干涉,从而在与半声子相互作用之后,对第一量子位的最终状态进行依赖于相位的调制。将先驱机制添加到此构造中,使先驱声子与信号声子纠缠。第一个量子比特发出一个以量子比特处于激发态为条件的声子先驱,没有信号声子,第二个量子比特捕获了这个先驱声子,存储了可以被读出的路径信息,破坏了信号声子的自干扰。 ,或删除。通道中有流动的声子,或者第一个量子比特保持其激发态。通过改变两个中间状态的相对相位,可以使这两个路径相长或相消地进行干涉,从而在与半声子相互作用之后,对第一量子位的最终状态进行依赖于相位的调制。将先驱机制添加到此构造中,使先驱声子与信号声子纠缠。第一个量子比特发出一个以量子比特处于激发态为条件的声子先驱,没有信号声子,第二个量子比特捕获了这个先驱声子,存储了可以被读出的路径信息,破坏了信号声子的自干扰。 ,或删除。通过改变两个中间状态的相对相位,可以使这两个路径相长或相消地进行干涉,从而在与半声子相互作用之后,对第一量子位的最终状态进行依赖于相位的调制。将先驱机制添加到此构造中,使先驱声子与信号声子纠缠。第一个量子比特发出一个以量子比特处于激发态为条件的声子先驱,没有信号声子,第二个量子比特捕获了这个先驱声子,存储了可以被读出的路径信息,破坏了信号声子的自干扰。 ,或删除。通过改变两个中间状态的相对相位,可以使这两个路径相长或相消地进行干涉,从而在与半声子相互作用之后,对第一量子位的最终状态进行依赖于相位的调制。将先驱机制添加到此构造中,使先驱声子与信号声子纠缠。第一个量子比特发出一个以量子比特处于激发态为条件的声子先驱,没有信号声子,第二个量子比特捕获了这个先驱声子,存储了可以被读出的路径信息,破坏了信号声子的自干扰。 ,或删除。与半声子相互作用之后。将先驱机制添加到此构造中,使先驱声子与信号声子纠缠。第一个量子比特发出一个以量子比特处于激发态为条件的声子先驱,没有信号声子,第二个量子比特捕获了这个先驱声子,存储了可以被读出的路径信息,破坏了信号声子的自干扰。 ,或删除。与半声子相互作用之后。将先驱机制添加到此构造中,使先驱声子与信号声子纠缠。第一个量子比特发出一个以量子比特处于激发态为条件的声子先驱,没有信号声子,第二个量子比特捕获了这个先驱声子,存储了可以被读出的路径信息,破坏了信号声子的自干扰。 ,或删除。
更新日期:2020-05-20
down
wechat
bug