当前位置: X-MOL 学术Int. J. Numer. Meth. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Goal‐oriented model reduction of parametrized nonlinear partial differential equations: Application to aerodynamics
International Journal for Numerical Methods in Engineering ( IF 2.9 ) Pub Date : 2020-05-19 , DOI: 10.1002/nme.6395
Masayuki Yano 1
Affiliation  

We introduce a goal‐oriented model reduction framework for rapid and reliable solution of parametrized nonlinear partial differential equations with applications in aerodynamics. Our goal is to provide quantitative and automatic control of various sources of errors in model reduction. Our framework builds on the following ingredients: a discontinuous Galerkin finite element (FE) method, which provides stability for convection‐dominated problems; reduced basis (RB) spaces, which provide rapidly convergent approximations; the dual‐weighted residual method, which provides effective output error estimates for both the FE and RB approximations; output‐based adaptive RB snapshots; and the empirical quadrature procedure (EQP), which hyperreduces the primal residual, adjoint residual, and output forms to enable online‐efficient evaluations while providing quantitative control of hyperreduction errors. The framework constructs a reduced model which provides, for parameter values in the training set, output predictions that meet the user‐prescribed tolerance by controlling the FE, RB, and EQP errors; in addition, the reduced model equips, for any parameter value, the output prediction with an effective, online‐efficient error estimate. We demonstrate the framework for parametrized aerodynamics problems modeled by the Reynolds‐averaged Navier‐Stokes equations; reduced models provide over two orders of magnitude online computational reduction and sharp error estimates for three‐dimensional flows.

中文翻译:

参数化非线性偏微分方程的目标导向模型简化:在空气动力学中的应用

我们引入了面向目标的模型简化框架,以快速,可靠地解决参数化非线性偏微分方程及其在空气动力学中的应用。我们的目标是对模型简化中的各种错误源提供定量和自动控制。我们的框架基于以下要素:不连续的Galerkin有限元(FE)方法,为对流占主导地位的问题提供稳定性;缩减基数(RB)空间,提供快速收敛的近似值;双加权残差法,可以为FE和RB近似值提供有效的输出误差估计;基于输出的自适应RB快照; 以及经验正交程序(EQP),该程序可以超简化原始残差,伴随残差,以及输出表格,以实现在线高效评估,同时提供对超还原误差的定量控制。该框架构建了一个简化的模型,该模型通过控制FE,RB和EQP错误,为训练集中的参数值提供满足用户指定公差的输出预测。此外,对于任何参数值,简化后的模型都会为输出预测配备有效的在线有效误差估计。我们展示了由雷诺平均Navier-Stokes方程建模的参数化空气动力学问题的框架。精简模型提供了超过两个数量级的在线计算精简和针对三维流的清晰误差估计。对于训练集中的参数值,通过控制FE,RB和EQP误差,输出满足用户指定公差的预测;此外,对于任何参数值,简化后的模型都会为输出预测配备有效的在线有效误差估计。我们演示了由雷诺平均Navier-Stokes方程建模的参数化空气动力学问题的框架。精简模型提供了超过两个数量级的在线计算精简和针对三维流的清晰误差估计。对于训练集中的参数值,通过控制FE,RB和EQP误差,输出满足用户指定公差的预测;此外,对于任何参数值,简化后的模型都会为输出预测配备有效的在线有效误差估计。我们展示了由雷诺平均Navier-Stokes方程建模的参数化空气动力学问题的框架。精简模型提供了超过两个数量级的在线计算精简和针对三维流的清晰误差估计。我们展示了由雷诺平均Navier-Stokes方程建模的参数化空气动力学问题的框架。精简模型提供了两个数量级的在线计算精简,并为三维流提供了清晰的误差估计。我们演示了由雷诺平均Navier-Stokes方程建模的参数化空气动力学问题的框架。精简模型提供了超过两个数量级的在线计算精简和针对三维流的清晰误差估计。
更新日期:2020-05-19
down
wechat
bug