当前位置: X-MOL 学术Discret. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Number of distinguishing colorings and partitions
Discrete Mathematics ( IF 0.8 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.disc.2020.111984
Bahman Ahmadi , Fatemeh Alinaghipour , Mohammad Hadi Shekarriz

A vertex coloring of a graph $G$ is called distinguishing (or symmetry breaking) if no non-identity automorphism of $G$ preserves it, and the distinguishing number, shown by $\mathrm{D}(G)$, is the smallest number of colors required for such a coloring. This paper is about counting non-equivalent distinguishing colorings of graphs with $k$ colors. A parameter, namely $\Phi_k (G)$, which is the number of non-equivalent distinguishing colorings of a graph $G$ with at most $k$ colors, is shown here to have an application in calculating the distinguishing number of the lexicographic product and $X$-join of graphs. We study this index (and some other similar indices) which is generally difficult to calculate. Then, we show that if one knows the distinguishing threshold of a graph $G$, which is the smallest number of colors $\theta(G)$ so that, for $k\geq \theta(G)$, every $k$-coloring of $G$ is distinguishing, then, in some special cases, counting the number of distinguishing colorings with $k$ colors is vary easy. We calculate $\theta(G)$ for some classes of graphs including the Kneser graph $K(n,2)$. We then turn to vertex partitioning by studying the distinguishing coloring partition of a graph $G$; a partition of vertices of $G$ which induces a distinguishing coloring for $G$. There, we introduce $\Psi_k (G)$ as the number of non-equivalent distinguishing coloring partitions with at most $k$ cells, which is a generalization to its distinguishing coloring counterpart.

中文翻译:

区分着色和分区的数量

如果没有 $G$ 的非恒等自同构保留它,则图 $G$ 的顶点着色称为可区分(或对称破坏),并且由 $\mathrm{D}(G)$ 表示的可区分数是这种着色所需的最少颜色数。这篇论文是关于计算具有 $k$ 颜色的图的非等价区分着色。一个参数,即 $\Phi_k (G)$,它是最多具有 $k$ 种颜色的图 $G$ 的非等价区分着色的数量,这里显示了在计算图的区分数量时的应用。词典产品和 $X$ 连接图。我们研究了这个通常难以计算的指数(以及其他一些类似的指数)。然后,我们证明,如果知道图 $G$ 的区分阈值,即最小的颜色数 $\theta(G)$,那么,对于$k\geq \theta(G)$,$G$的每一个$k$-coloring 都是可区分的,那么,在某些特殊情况下,计算具有$k$ 颜色的可区分着色的数量是很容易的。我们为某些类别的图计算 $\theta(G)$,包括 Kneser 图 $K(n,2)$。然后,我们通过研究图 $G$ 的区分着色分区来转向顶点分区;$G$ 的顶点分区,它为 $G$ 引入了可区分的着色。在那里,我们引入了 $\Psi_k (G)$ 作为具有最多 $k$ 单元的非等效区分着色分区的数量,这是对其区分着色对应物的概括。我们为某些类别的图计算 $\theta(G)$,包括 Kneser 图 $K(n,2)$。然后,我们通过研究图 $G$ 的区分着色分区来转向顶点分区;$G$ 的顶点分区,它为 $G$ 引入了可区分的着色。在那里,我们引入了 $\Psi_k (G)$ 作为具有最多 $k$ 单元的非等效区分着色分区的数量,这是对其区分着色对应物的概括。我们为某些类别的图计算 $\theta(G)$,包括 Kneser 图 $K(n,2)$。然后我们通过研究图 $G$ 的区分着色分区来转向顶点分区;$G$ 的顶点分区,它为 $G$ 引入了可区分的着色。在那里,我们引入了 $\Psi_k (G)$ 作为最多具有 $k$ 单元的非等效区分着色分区的数量,这是对其区分着色对应物的概括。
更新日期:2020-09-01
down
wechat
bug