当前位置: X-MOL 学术J. Therm. Spray Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Cavitation Erosion–Corrosion Resistance of High-Velocity Oxy-Fuel-Sprayed Ni-Cr-Al2O3 Coatings Through Stationary Friction Processing
Journal of Thermal Spray Technology ( IF 3.1 ) Pub Date : 2020-05-19 , DOI: 10.1007/s11666-020-01050-5
H. S. Arora , M. Rani , G. Perumal , H. Singh , H. S. Grewal

Cavitation erosion is a huge problem in engineering structures working under hydrodynamic conditions. The synergistic effect of erosion and corrosion can aggravate the material removal by several orders of magnitude. Surface coatings are widely used to address material degradation by erosion–corrosion. However, non-homogenous microstructure and presence of defects leads to premature coating failure under erosion–corrosion conditions. Thus, it is imperative to identify plausible solutions to address cavitation-related material degradation. In this study, Ni-Cr-5Al2O3 coatings were deposited on stainless steel substrate using high-velocity-oxy-fuel technique. The as-sprayed coating showed highly non-homogeneous microstructure comprising splats, pores, intermetallic compounds and elemental segregation. A new thermo-mechanical processing technique, stationary friction processing (SFP), was utilized for achieving through-thickness microstructural refinement in as-sprayed coating. As-sprayed and SFP-treated coatings were tested in pure cavitation erosion, corrosion in 3.5% NaCl solution and erosion–corrosion. SFP treatment resulted in 5-times enhancement in the erosion and corrosion resistance compared to as-sprayed coating. The remarkable performance of Ni-Cr-5Al2O3 coatings after SFP treatment is attributed to significant enhancement in the mechanical properties including hardness and fracture toughness which is the consequence of complete removal of splat boundaries, pores, intermetallic compounds and uniform element distribution up to the coating–substrate interface.

中文翻译:

通过固定摩擦处理提高高速氧燃料喷涂 Ni-Cr-Al2O3 涂层的抗空蚀性

在水动力条件下工作的工程结构中,空蚀是一个巨大的问题。侵蚀和腐蚀的协同效应可以将材料去除加剧几个数量级。表面涂层被广泛用于解决因侵蚀腐蚀造成的材料降解。然而,不均匀的微观结构和缺陷的存在会导致涂层在侵蚀腐蚀条件下过早失效。因此,必须确定可行的解决方案来解决与空化相关的材料降解问题。在这项研究中,Ni-Cr-5Al2O3 涂层使用高速氧燃料技术沉积在不锈钢基材上。喷涂后的涂层显示出高度不均匀的微观结构,包括碎片、孔隙、金属间化合物和元素偏析。一种新的热机械加工技术,固定摩擦处理 (SFP) 用于在喷涂涂层中实现全厚度微观结构细化。喷涂和 SFP 处理的涂层在纯空蚀、3.5% NaCl 溶液腐蚀和侵蚀腐蚀中进行了测试。与喷涂涂层相比,SFP 处理使抗侵蚀性和耐腐蚀性提高了 5 倍。SFP 处理后 Ni-Cr-5Al2O3 涂层的显着性能归因于机械性能的显着提高,包括硬度和断裂韧性,这是完全去除碎片边界、孔隙、金属间化合物和均匀元素分布直至涂层的结果– 基板接口。用于在喷涂涂层中实现全厚度微观结构细化。喷涂和 SFP 处理的涂层在纯空蚀、3.5% NaCl 溶液腐蚀和侵蚀腐蚀中进行了测试。与喷涂涂层相比,SFP 处理使抗侵蚀性和耐腐蚀性提高了 5 倍。SFP 处理后 Ni-Cr-5Al2O3 涂层的显着性能归因于机械性能的显着提高,包括硬度和断裂韧性,这是完全去除碎片边界、孔隙、金属间化合物和均匀元素分布直至涂层的结果– 基板接口。用于在喷涂涂层中实现全厚度微观结构细化。喷涂和 SFP 处理的涂层在纯空蚀、3.5% NaCl 溶液腐蚀和侵蚀腐蚀中进行了测试。与喷涂涂层相比,SFP 处理使抗侵蚀性和耐腐蚀性提高了 5 倍。SFP 处理后 Ni-Cr-5Al2O3 涂层的显着性能归因于机械性能的显着提高,包括硬度和断裂韧性,这是完全去除碎片边界、孔隙、金属间化合物和均匀元素分布直至涂层的结果– 基板接口。与喷涂涂层相比,SFP 处理使抗侵蚀性和耐腐蚀性提高了 5 倍。SFP 处理后 Ni-Cr-5Al2O3 涂层的显着性能归因于机械性能的显着提高,包括硬度和断裂韧性,这是完全去除碎片边界、孔隙、金属间化合物和均匀元素分布直至涂层的结果– 基板接口。与喷涂涂层相比,SFP 处理使抗侵蚀性和耐腐蚀性提高了 5 倍。SFP 处理后 Ni-Cr-5Al2O3 涂层的显着性能归因于机械性能的显着提高,包括硬度和断裂韧性,这是完全去除碎片边界、孔隙、金属间化合物和均匀元素分布直至涂层的结果– 基板接口。
更新日期:2020-05-19
down
wechat
bug