当前位置: X-MOL 学术arXiv.cs.RO › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On Efficient Connectivity-Preserving Transformations in a Grid
arXiv - CS - Robotics Pub Date : 2020-05-17 , DOI: arxiv-2005.08351
Abdullah Almethen, Othon Michail, Igor Potapov

We consider a discrete system of $n$ devices lying on a 2-dimensional square grid and forming an initial connected shape $S_I$. Each device is equipped with a linear-strength mechanism which enables it to move a whole line of consecutive devices in a single time-step. We study the problem of transforming $S_I$ into a given connected target shape $S_F$ of the same number of devices, via a finite sequence of \emph{line moves}. Our focus is on designing \emph{centralised} transformations aiming at \emph{minimising the total number of moves} subject to the constraint of \emph{preserving connectivity} of the shape throughout the course of the transformation. We first give very fast connectivity-preserving transformations for the case in which the \emph{associated graphs} of $ S_I $ and $ S_F $ are isomorphic to a Hamiltonian line. In particular, our transformations make $ O(n \log n $) moves, which is asymptotically equal to the best known running time of connectivity-breaking transformations. Our most general result is then a connectivity-preserving \emph{universal transformation} that can transform any initial connected shape $ S_I $ into any target connected shape $ S_F $, through a sequence of $O(n\sqrt{n})$ moves. Finally, we establish $\Omega(n \log n)$ lower bounds for two restricted sets of transformations. These are the first lower bounds for this model and are matching the best known $ O(n \log n) $ upper bounds.

中文翻译:

关于电网中有效的保持连接性的转换

我们考虑位于二维方形网格上并形成初始连接形状 $S_I$ 的 $n$ 设备的离散系统。每个设备都配备了一个线性强度机制,使其能够在一个时间步长内移动一整条连续设备。我们研究了将 $S_I$ 转换为相同数量设备的给定连接目标形状 $S_F$ 的问题,通过 \emph {行移动} 的有限序列。我们的重点是设计 \emph{centralised} 变换,旨在 \emph{最小化移动总数},并在整个变换过程中受到形状的 \emph{保留连通性} 的约束。我们首先为 $ S_I $ 和 $ S_F $ 的 \emph {关联图} 与哈密顿线同构的情况给出了非常快速的保持连通性的变换。特别是,我们的转换使 $ O(n \log n $) 移动,这渐近等于最知名的连接中断转换的运行时间。我们最一般的结果是保持连接性的 \emph{通用变换},它可以通过 $O(n\sqrt{n})$ 序列将任何初始连接形状 $ S_I $ 转换为任何目标连接形状 $ S_F $移动。最后,我们为两个受限的变换集建立了 $\Omega(n \log n)$ 下界。这些是该模型的第一个下限,并且与最著名的 $ O(n \log n) $ 上限相匹配。我们最一般的结果是保持连接性的 \emph{通用变换},它可以通过 $O(n\sqrt{n})$ 序列将任何初始连接形状 $ S_I $ 转换为任何目标连接形状 $ S_F $移动。最后,我们为两个受限的变换集建立了 $\Omega(n \log n)$ 下界。这些是该模型的第一个下限,并且与最著名的 $ O(n \log n) $ 上限相匹配。我们最一般的结果是保持连接性的 \emph{通用变换},它可以通过 $O(n\sqrt{n})$ 序列将任何初始连接形状 $ S_I $ 转换为任何目标连接形状 $ S_F $移动。最后,我们为两个受限的变换集建立了 $\Omega(n \log n)$ 下界。这些是该模型的第一个下限,并且与最著名的 $ O(n \log n) $ 上限相匹配。
更新日期:2020-05-19
down
wechat
bug