当前位置: X-MOL 学术Math. Nachr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generalized boundary triples, I. Some classes of isometric and unitary boundary pairs and realization problems for subclasses of Nevanlinna functions
Mathematische Nachrichten ( IF 1 ) Pub Date : 2020-05-19 , DOI: 10.1002/mana.201800300
Volodymyr Derkach 1, 2 , Seppo Hassi 3 , Mark Malamud 4
Affiliation  

With a closed symmetric operator A in a Hilbert space H a triple Π={H,Γ0,Γ1} of a Hilbert space H and two abstract trace operators Γ0 and Γ1 from A∗ to H is called a generalized boundary triple for A∗ if an abstract analogue of the second Green's formula holds. Various classes of generalized boundary triples are introduced and corresponding Weyl functions M(·) are investigated. The most important ones for applications are specific classes of boundary triples for which Green's second identity admits a certain maximality property which guarantees that the corresponding Weyl functions are Nevanlinna functions on H, i.e. M(·)∈R(H), or at least they belong to the class R∼(H) of Nevanlinna families on H. The boundary condition Γ0f=0 determines a reference operator A0(=kerΓ0). The case where A0 is selfadjoint implies a relatively simple analysis, as the joint domain of the trace mappings Γ0 and Γ1 admits a von Neumann type decomposition via A0 and the defect subspaces of A. The case where A0 is only essentially selfadjoint is more involved, but appears to be of great importance, for instance, in applications to boundary value problems e.g. in PDE setting or when modeling differential operators with point interactions. Various classes of generalized boundary triples will be characterized in purely analytic terms via the Weyl function M(·) and close interconnections between different classes of boundary triples and the corresponding transformed/renormalized Weyl functions are investigated. These characterizations involve solving direct and inverse problems for specific classes of operator functions M(·). Most involved ones concern operator functions M(·)∈R(H) for which τM(λ)(f,g)=(2iImλ)−1[(M(λ)f,g)−(f,M(λ)g)],f,g∈domM(λ),defines a closable nonnegative form on H. It turns out that closability of τM(λ)(f,g) does not depend on λ∈C± and, moreover, that the closure then is a form domain invariant holomorphic function on C± while τM(λ)(f,g) itself need not be domain invariant. In this study we also derive several additional new results, for instance, Kreĭn‐type resolvent formulas are extended to the most general setting of unitary and isometric boundary triples appearing in the present work. In part II of the present work all the main results are shown to have applications in the study of ordinary and partial differential operators.

中文翻译:

广义边界三元组,I. Nevanlinna 函数子类的一些类等距和酉边界对和实现问题

对于希尔伯特空间 H 中的闭对称算子 A,希尔伯特空间 H 的三元组 Π={H,Γ0,Γ1} 和从 A∗ 到 H 的两个抽象迹算符 Γ0 和 Γ1 称为 A∗ 的广义边界三元组,如果第二格林公式的抽象类似物成立。介绍了各类广义边界三元组,并研究了相应的外尔函数 M(·)。最重要的应用是特定类别的边界三元组,格林的第二个恒等式承认特定的极大值性质,保证相应的 Weyl 函数是 H 上的 Nevanlinna 函数,即 M(·)∈R(H),或者至少它们属于 H 上 Nevanlinna 族的 R∼(H) 类。边界条件 Γ0f=0 确定参考算子 A0(=kerΓ0)。A0 是自伴随的情况意味着一个相对简单的分析,作为迹映射 Γ0 和 Γ1 的联合域,允许通过 A0 和 A 的缺陷子空间进行冯诺依曼类型分解。 A0 仅本质上是自伴随的情况更多涉及,但似乎很重要,例如,边界值问题的应用,例如在 PDE 设置中或在对具有点相互作用的微分算子进行建模时。各种类别的广义边界三元组将通过 Weyl 函数 M(·) 以纯解析项进行表征,并研究不同类别的边界三元组与相应的变换/重整化 Weyl 函数之间的紧密联系。这些特征涉及解决特定类别的算子函数 M(·) 的正问题和逆问题。大多数涉及到的算子函数 M(·)∈R(H) 其中 τM(λ)(f, g)=(2iImλ)−1[(M(λ)f,g)−(f,M(λ)g)],f,g∈domM(λ), 定义了 H 上的可闭合非负形式。 结果τM(λ)(f,g) 的可闭性不依赖于 λ∈C±,而且,闭包是 C± 上的形式域不变全纯函数,而 τM(λ)(f,g) 本身需要不是域不变的。在这项研究中,我们还得出了几个额外的新结果,例如,将 Kreĭn 型分解公式扩展到目前工作中出现的最普遍的幺正和等距边界三元组。在当前工作的第二部分中,所有主要结果都表明在普通和偏微分算子的研究中具有应用价值。则闭包是 C± 上的形式域不变全纯函数,而 τM(λ)(f,g) 本身不必是域不变的。在这项研究中,我们还得出了几个额外的新结果,例如,将 Kreĭn 型分解公式扩展到目前工作中出现的最普遍的幺正和等距边界三元组。在当前工作的第二部分中,所有主要结果都表明在普通和偏微分算子的研究中具有应用价值。则闭包是 C± 上的形式域不变全纯函数,而 τM(λ)(f,g) 本身不必是域不变的。在这项研究中,我们还得出了几个额外的新结果,例如,将 Kreĭn 型分解公式扩展到目前工作中出现的最普遍的幺正和等距边界三元组。在当前工作的第二部分中,所有主要结果都表明在普通和偏微分算子的研究中具有应用价值。
更新日期:2020-05-19
down
wechat
bug