当前位置: X-MOL 学术J. Geophys. Res. Atmos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints
Journal of Geophysical Research: Atmospheres ( IF 4.4 ) Pub Date : 2020-05-19 , DOI: 10.1029/2019jd032290
Alison Ming 1, 2 , V. Holly L. Winton 1 , James Keeble 2, 3 , Nathan L. Abraham 2, 3 , Mohit C. Dalvi 4 , Paul Griffiths 2, 3 , Nicolas Caillon 5 , Anna E. Jones 1 , Robert Mulvaney 1 , Joël Savarino 5 , Markus M. Frey 1 , Xin Yang 1
Affiliation  

Major tropical volcanic eruptions have emitted large quantities of stratospheric sulfate and are potential sources of stratospheric chlorine although this is less well constrained by observations. This study combines model and ice core analysis to investigate past changes in total column ozone. Historic eruptions are good analogs for future eruptions as stratospheric chlorine levels have been decreasing since the year 2000. We perturb the preindustrial atmosphere of a chemistry‐climate model with high and low emissions of sulfate and chlorine. The sign of the resulting Antarctic ozone change is highly sensitive to the background stratospheric chlorine loading. In the first year, the response is dynamical, with ozone increases over Antarctica. In the high HCl (2 Tg emission) experiment, the injected chlorine is slowly transported to the polar regions with subsequent chemical ozone depletion. These model results are then compared to measurements of the stable nitrogen isotopic ratio, urn:x-wiley:jgrd:media:jgrd56248:jgrd56248-math-0001, from a low snow accumulation Antarctic ice core from Dronning Maud Land (recovered in 2016–2017). We expect ozone depletion to lead to increased surface ultraviolet (UV) radiation, enhanced air‐snow nitrate photochemistry and enrichment in urn:x-wiley:jgrd:media:jgrd56248:jgrd56248-math-0002 in the ice core. We focus on the possible ozone depletion event that followed the largest volcanic eruption in the past 1,000 years, Samalas in 1257. The characteristic sulfate signal from this volcano is present in the ice core but the variability in urn:x-wiley:jgrd:media:jgrd56248:jgrd56248-math-0003 dominates any signal arising from changes in ultraviolet from ozone depletion. Prolonged complete ozone removal following this eruption is unlikely to have occurred over Antarctica.

中文翻译:

热带火山爆发引起的平流层臭氧变化:模拟和冰芯约束

主要的热带火山喷发排放了大量的平流层硫酸盐,并且是平流层氯的潜在来源,尽管观测结果对这种情况的限制较小。这项研究将模型和冰芯分析相结合,以调查过去总塔中臭氧的变化。自2000年以来,平流层中的氯含量一直在下降,历史性喷发是未来喷发的良好类似物。我们扰乱了化学和气候模型的工业化前大气层,硫酸盐和氯的排放量高而低。导致南极臭氧变化的迹象对平流层背景氯含量非常敏感。在第一年,反应是动态的,南极洲的臭氧增加。在高HCl(排放2 Tg)的实验中,注入的氯会缓慢传输到极地,随后化学臭氧也会消耗掉。然后将这些模型结果与稳定氮同位素比的测量结果进行比较,ur:x-wiley:jgrd:media:jgrd56248:jgrd56248-math-0001,来自Dronning Maud Land的低积雪南极冰芯(于2016–2017年恢复)。我们预计臭氧消耗将导致表面紫外线(UV)辐射增加,空气雪硝酸盐光化学增强以及urn:x-wiley:jgrd:media:jgrd56248:jgrd56248-math-0002冰芯中的富集。我们关注的是在过去的1000年中最大的火山爆发(1257年的萨马拉斯)之后可能发生的臭氧消耗事件。该火山的特征性硫酸盐信号存在于冰芯中,但可变性ur:x-wiley:jgrd:media:jgrd56248:jgrd56248-math-0003主导着由紫外线引起的任何信号变化臭氧耗竭。在南极洲发生喷发后,长时间彻底清除臭氧的可能性不大。
更新日期:2020-05-19
down
wechat
bug