当前位置: X-MOL 学术Gene › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of short-term starvation and refeeding on the expression of KLF15 and regulatory mechanism of branched-chain amino acids metabolism in muscle of Chinese soft-shelled turtle (Pelodiscus sinensis).
Gene ( IF 3.5 ) Pub Date : 2020-05-19 , DOI: 10.1016/j.gene.2020.144782
Honghui Li 1 , Yaxiong Pan 2 , Lingsheng Bao 2 , Yulong Li 2 , Congyi Cheng 2 , Li Liu 3 , Jing Xiang 2 , Jia Cheng 2 , Jianshe Zhang 2 , Wuying Chu 2 , Yudong Shen 4
Affiliation  

The branched-chain amino acids (BCAA) play an important role in muscle energy metabolism, and Krüppel-like factor 15 (KLF15) is an essential regulator of BCAA metabolism in muscle under nutritional deficiency. In this study, we analyzed the effect of normal feeding (starvation for 0 day), starvation for 3, 7, 10, 15 days, and refeeding for 7 days after 15 days of starvation on the expression of KLF15 and BCAA metabolism in muscle of Chinese soft-shelled turtles by a fasting-refeeding trial. The results showed that the level of KLF15 transcription was increased first and then decreased in muscle during short-term starvation, and the protein level was gradually increased. Both the mRNA and protein level of the KLF15 returned to normal feeding level after refeeding for 7 days. The changing trend of the activities of branched-chain aminotransferase (BCAT) and alanine aminotransferase (ALT) was consistent to that of KLF15 mRNA, but at the transcription level, the expression of BCAT mRNA was consistent with the change of enzyme activity as well as ALT continued to increase in muscle under starvation. In addition, BCAA content showed a trend that decreased first and then increased under starvation, while the alanine (Ala) was the contrary. The above results indicated that the regulatory role of KLF15 in BCAA catabolism of muscle in Chinese soft-shelled turtles under nutritional deficiency, which might be activated the catabolism of BCAA in muscle to provide energy and maintain the homeostasis by KLF15-BACC signaling axis.
更新日期:2020-05-19
down
wechat
bug