当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A microfluidically controlled concave–convex membrane lens using an addressing operation system
Microsystems & Nanoengineering ( IF 7.9 ) Pub Date : 2020-05-18 , DOI: 10.1038/s41378-020-0148-0
Shouju Yao 1 , Zhou Zhou 2 , Gonghan He 1 , Kunpeng Zhang 1 , Xiang Huang 1 , Bing Qiu 1 , Daoheng Sun 1
Affiliation  

Electrical control toolkits for microlens arrays are available to some extent, but for applications in environments with strong electromagnetic fields, radiation, or deep water, non-electrical actuation and control strategies are more appropriate. An integrated digital microfluidic zoom actuating unit with a logic addressing unit for a built-in membrane lens array, e.g., a flexible bionic compound eye, is developed and studied in this article. A concave–convex membrane fluidic microvalve, which is the component element of the logic gate, actuator, and microlens, is proposed to replace the traditional solenoid valve. The functions of pressure regulation and decoding can be obtained by incorporating microvalves into fluidic networks according to equivalent circuit designs. The zoom actuating unit contains a pressure regulator to adjust the focal length of lenses with three levels, and the logic addressing unit contains a decoder to choose a typical lens from a hexagonal lens array. The microfluidic chip control system is connected flexibly to the actuating part, a membrane lens array. It is shown from a simulation and experimental demonstration that the designed and fabricated system, which is composed of a whole microfluidic zoom unit, addressing technology, and a microlens array, works well. Because these components are constructed in the same fabrication process and operate with the same work media and driving source, the system can be made highly compatible and lightweight for applications such as human-machine interfaces and soft robots.



中文翻译:

使用寻址操作系统的微流体控制凹凸膜透镜

微透镜阵列的电控工具包在一定程度上是可用的,但对于强电磁场、辐射或深水环境中的应用,非电驱动和控制策略更合适。本文开发和研究了一种集成的数字微流控变焦驱动单元,带有用于内置膜透镜阵列(例如柔性仿生复眼)的逻辑寻址单元。提出了一种凹凸膜流体微阀,它是逻辑门、致动器和微透镜的组成元件,用来代替传统的电磁阀。根据等效电路设计,将微阀集成到流体网络中可以获得压力调节和解码的功能。变焦致动单元包含一个压力调节器,以三级调整镜头的焦距,逻辑寻址单元包含一个解码器,用于从六边形透镜阵列中选择一个典型的镜头。微流控芯片控制系统灵活地连接到执行部分,薄膜透镜阵列。仿真和实验演示表明,所设计和制造的由整个微流控变焦单元、寻址技术和微透镜阵列组成的系统运行良好。由于这些组件在相同的制造过程中构建并使用相同的工作介质和驱动源运行,因此该系统可以高度兼容且重量轻,适用于人机界面和软机器人等应用。逻辑寻址单元包含一个解码器,用于从六边形透镜阵列中选择一个典型的透镜。微流控芯片控制系统灵活地连接到执行部分,薄膜透镜阵列。仿真和实验演示表明,所设计和制造的由整个微流控变焦单元、寻址技术和微透镜阵列组成的系统运行良好。由于这些组件在相同的制造过程中构建并使用相同的工作介质和驱动源运行,因此该系统可以高度兼容且重量轻,适用于人机界面和软机器人等应用。逻辑寻址单元包含一个解码器,用于从六边形透镜阵列中选择一个典型的透镜。微流控芯片控制系统灵活地连接到执行部分,薄膜透镜阵列。仿真和实验演示表明,所设计和制造的由整个微流控变焦单元、寻址技术和微透镜阵列组成的系统运行良好。由于这些组件在相同的制造过程中构建并使用相同的工作介质和驱动源运行,因此该系统可以高度兼容且重量轻,适用于人机界面和软机器人等应用。仿真和实验演示表明,所设计和制造的由整个微流控变焦单元、寻址技术和微透镜阵列组成的系统运行良好。由于这些组件在相同的制造过程中构建并使用相同的工作介质和驱动源运行,因此该系统可以高度兼容且重量轻,适用于人机界面和软机器人等应用。仿真和实验演示表明,所设计和制造的由整个微流控变焦单元、寻址技术和微透镜阵列组成的系统运行良好。由于这些组件在相同的制造过程中构建并使用相同的工作介质和驱动源运行,因此该系统可以高度兼容且重量轻,适用于人机界面和软机器人等应用。

更新日期:2020-05-18
down
wechat
bug