当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the Interfacial Stability between Lithium and Solid-State Electrolyte via Dipole-Structured Lithium Layer Deposited on Graphene Oxide.
Advanced Science ( IF 15.1 ) Pub Date : 2020-05-18 , DOI: 10.1002/advs.202000237
Muqin Wang 1 , Zhe Peng 1 , Wenwei Luo 2 , Qiang Zhang 1 , Zhendong Li 1 , Yun Zhu 1 , Huan Lin 1 , Liangting Cai 1 , Xiayin Yao 1 , Chuying Ouyang 2 , Deyu Wang 1
Affiliation  

Utilization of lithium (Li) metal anode in solid‐state batteries (SSBs) with sulfide solid‐state electrolyte (SSE) is hindered by the instable Li/SSE interface. A general solution to solve this problem is to place an expensive indium (In) foil between the SSE and Li, while it decreases the output voltage and thus the energy density of the battery. In this work, an alternative strategy is demonstrated to boost the cycling performances of SSB by wrapping a graphene oxide (GO) layer on the anode. According to density functional theory results, initial deposition of a thin Li layer on the defective GO sheets leads to the formation of a dipole structure, due to the electron‐withdrawing ability of GO acting on Li. By incorporating GO sheets in a nanocomposite of copper‐cuprous oxide‐GO (Cu‐Cu2O‐GO, CCG), a composite Li anode enables a high coulombic efficiency above 99.5% over 120 cycles for an SSB using Li10GeP2S12 SSE and LiCoO2 cathode, and the sulfide SSE is not chemically decomposed after cycling. The highest occupied molecule orbital/lowest unoccupied molecular orbital energy gap of this Li/GO dipole structure likely stretches over those of Li and sulfide SSE, enabling stabilized Li/SSE interface that can replace the expensive In layer as Li protective structure in SSBs.

中文翻译:

通过沉积在氧化石墨烯上的偶极结构化锂层提高锂与固态电解质之间的界面稳定性。

Li / SSE界面不稳定,阻碍了硫化锂固态电解质(SSE)在固态电池(SSB)中使用锂(Li)金属阳极。解决此问题的一般方法是在SSE和Li之间放置昂贵的铟(In)箔,同时降低输出电压,从而降低电池的能量密度。在这项工作中,通过在阳极上包裹氧化石墨烯(GO)层,证明了另一种策略可以提高SSB的循环性能。根据密度泛函理论的结果,由于GO对Li的吸电子能力,在有缺陷的GO片上最初沉积薄的Li层导致形成偶极结构。通过将GO薄板结合到铜-氧化亚铜-GO(Cu-Cu 2O-GO,CCG),使用Li 10 GeP 2 S 12 SSE和LiCoO 2阴极,复合Li阳极可在120个循环内使SSB的库仑效率达到99.5%以上,并且硫化物SSE在循环后不会化学分解。Li / GO偶极结构的最高占据分子轨道/最低未占据分子轨道能隙可能超过Li和硫化物SSE的能隙,从而实现稳定的Li / SSE界面,可以取代昂贵的In层作为SSB中的Li保护结构。
更新日期:2020-07-08
down
wechat
bug