当前位置: X-MOL 学术Appl. Geochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mineral dissolution and precipitation induced by hydraulic fracturing of a mudstone and a tight sandstone in the Powder River Basin, Wyoming, USA
Applied Geochemistry ( IF 3.4 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.apgeochem.2020.104636
Ryan J. Herz-Thyhsen , John P. Kaszuba , Janet C. Dewey

Abstract Water-based hydraulic fracturing requires high-pressure injection of large quantities of water mixed with chemicals into the subsurface, where fluids contact mineral surfaces. Chemical imbalance between minerals and the injected fluids provides the potential for chemical reactions that may induce physical alterations to the rock. We investigate mineral reactivity during in situ water-rock interaction between unconventional reservoir rocks and hydraulic fracturing fluid. We characterized two unconventional reservoir rocks, a calcareous mudstone (B Bench of the Niobrara Formation) and a calcite-cemented sandstone (Wall Creek Member of the Frontier Formation) of the Powder River Basin, Wyoming, USA, and developed, analyzed, and quantified the aqueous geochemistry of a hydraulic fracturing fluid (HFF). These datasets informed the design of numerical simulations that predict mineral-HFF interactions at in situ conditions over a 31-day timeframe. The two unconventional reservoir rocks have similar mineral assemblages, albeit in different proportions, which leads to similar dissolution/precipitation reactions. Calcite, feldspar, and authigenic clay minerals begin to dissolve, and secondary calcite, anhydrite, and illite form. Calcite dissolution increases porosity of the B Bench from 2% to 2.9% and porosity of the Wall Creek from 5% to 5.8%. Mineral-fluid reactions manifest in flowback fluids as temporal geochemical trends consistent with limited field data.

中文翻译:

美国怀俄明州粉河盆地泥岩和致密砂岩水力压裂引起的矿物溶解和沉淀

摘要 水基水力压裂需要将大量混有化学物质的水高压注入地下,流体与矿物表面接触。矿物和注入流体之间的化学不平衡提供了可能引起岩石物理改变的化学反应的可能性。我们研究了非常规储层岩石和水力压裂液之间原位水-岩相互作用过程中的矿物反应性。我们表征了美国怀俄明州粉河盆地的两种非常规储层岩石、钙质泥岩(Niobrara 组 B 阶)和方解石胶结砂岩(Wall Creek Member of the Frontier Formation),并进行了开发、分析和量化水力压裂液 (HFF) 的含水地球化学。这些数据集为数值模拟的设计提供了信息,可在 31 天的时间范围内预测原位条件下矿物-HFF 的相互作用。两种非常规储集岩具有相似的矿物组合,尽管比例不同,这导致了相似的溶解/沉淀反应。方解石、长石和自生粘土矿物开始溶解,形成次生方解石、硬石膏和伊利石。方解石溶解使 B Bench 的孔隙率从 2% 增加到 2.9%,Wall Creek 的孔隙率从 5% 增加到 5.8%。矿物流体反应在回流流体中表现为与有限的现场数据一致的时间地球化学趋势。尽管比例不同,这会导致类似的溶解/沉淀反应。方解石、长石和自生粘土矿物开始溶解,形成次生方解石、硬石膏和伊利石。方解石溶解使 B Bench 的孔隙率从 2% 增加到 2.9%,Wall Creek 的孔隙率从 5% 增加到 5.8%。矿物流体反应在回流流体中表现为与有限的现场数据一致的时间地球化学趋势。尽管比例不同,这会导致类似的溶解/沉淀反应。方解石、长石和自生粘土矿物开始溶解,形成次生方解石、硬石膏和伊利石。方解石溶解使 B Bench 的孔隙率从 2% 增加到 2.9%,Wall Creek 的孔隙率从 5% 增加到 5.8%。矿物流体反应在回流流体中表现为与有限的现场数据一致的时间地球化学趋势。
更新日期:2020-08-01
down
wechat
bug