当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
Discriminative block-diagonal covariance descriptors for image set classification
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2020-05-16 , DOI: 10.1016/j.patrec.2020.05.018
Jieyi Ren; Xiao-jun Wu; Josef Kittler

Image set classification has recently received much attention due to its various applications in pattern recognition and computer vision. To compare and match image sets, the major challenges are to devise an effective and efficient representation and to define a measure of similarity between image sets. In this paper, we propose a method for representing image sets based on block-diagonal Covariance Descriptors (CovDs). In particular, the proposed image set representation is in the form of non-singular covariance matrices, also known as Symmetric Positive Definite (SPD) matrices, that lie on Riemannian manifold. By dividing each image of an image set into square blocks of the same size, we compute the corresponding block CovDs instead of the global one. Taking the relative discriminative power of these block CovDs into account, a block-diagonal SPD matrix can be constructed to achieve a better discriminative capability. We extend the proposed approach to work with bidirectional CovDs and achieve a further boost in performance. The resulting block-diagonal SPD matrices combined with Riemannian metrics are shown to provide a powerful basis for image set classification. We perform an extensive evaluation on four datasets for several image set classification tasks. The experimental results demonstrate the effectiveness and efficiency of the proposed method.
更新日期:2020-06-27

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug