当前位置: X-MOL 学术Comput. Aided Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sliding Basis Optimization for Heterogeneous Material Design
Computer-Aided Design ( IF 4.3 ) Pub Date : 2020-05-16 , DOI: 10.1016/j.cad.2020.102864
Nurcan Gecer Ulu , Svyatoslav Korneev , Erva Ulu , Saigopal Nelaturi

We present the sliding basis computational framework to automatically synthesize heterogeneous (graded or discrete) material fields for parts designed using constrained optimization. Our framework uses the fact that any spatially varying material field over a given domain may be parameterized as a weighted sum of the Laplacian eigenfunctions. We bound the parameterization of all material fields using a small set of weights to truncate the Laplacian eigenfunction expansion, which enables efficient design space exploration with the weights as a small set of design variables. We further improve computational efficiency by using the property that the Laplacian eigenfunctions form a spectrum and may be ordered from lower to higher frequencies. Starting the optimization with a small set of weighted lower frequency basis functions we iteratively include higher frequency bases by sliding a window over the space of ordered basis functions as the optimization progresses. This approach allows greater localized control of the material distribution as the sliding window moves through higher frequencies. The approach also reduces the number of optimization variables per iteration, thus the design optimization process speeds up independent of the domain resolution without sacrificing analysis quality. While our method is useful for problems where analytical gradients are available, it is most beneficial when the gradients may not be computed easily (i.e., optimization problems coupled with external black-box analysis) thereby enabling optimization of otherwise intractable design problems. The sliding basis framework is independent of any particular physics analysis, objective and constraints, providing a versatile and powerful design optimization tool for various applications. We demonstrate our approach on graded solid rocket fuel design and multi-material topology optimization applications and evaluate its performance.



中文翻译:

异构材料设计的滑动基础优化

我们提出滑动基础计算框架,用于自动合成使用约束优化设计的零件的异类(渐变或离散)材料场。我们的框架利用以下事实:给定域上任何空间变化的物质场都可以参数化为拉普拉斯特征函数的加权和。我们使用一小组权重来限制所有材料场的参数化,以截断Laplacian本征函数展开,从而可以将权重作为一小组设计变量来进行有效的设计空间探索。通过使用拉普拉斯特征函数形成频谱并可以按从低到高的顺序排列的性质,我们进一步提高了计算效率。从一小部分加权的低频基础函数开始优化,我们在优化过程中通过在有序基础函数空间上滑动窗口来迭代地包含高频基础。当滑动窗口通过更高的频率移动时,这种方法可以对材料的分布进行更局部的控制。该方法还减少了每次迭代的优化变量的数量,因此设计优化过程可以在不牺牲分析质量的情况下独立于域分辨率而加快速度。虽然我们的方法对于存在分析梯度的问题很有用,但当梯度的计算可能不容易时,这是最有益的(当滑动窗口通过更高的频率移动时,这种方法可以对材料的分布进行更局部的控制。该方法还减少了每次迭代的优化变量的数量,因此设计优化过程可以在不牺牲分析质量的情况下独立于域分辨率而加快速度。虽然我们的方法对于存在分析梯度的问题很有用,但当梯度的计算可能不容易时,这是最有益的(当滑动窗口通过更高的频率移动时,这种方法可以对材料的分布进行更局部的控制。该方法还减少了每次迭代的优化变量的数量,因此设计优化过程可以在不牺牲分析质量的情况下独立于域分辨率而加快速度。虽然我们的方法对于存在分析梯度的问题很有用,但当梯度的计算可能不容易时,这是最有益的(例如,优化问题与外部黑盒分析相结合),从而能够优化其他难以解决的设计问题。滑动基础框架独立于任何特定的物理分析,目标和约束,为各种应用提供了一种功能强大的多功能设计优化工具。我们演示了在分级固体火箭燃料设计和多材料拓扑优化应用中的方法,并评估了其性能。

更新日期:2020-05-16
down
wechat
bug