当前位置: X-MOL 学术Energy Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations
Energy Reports ( IF 5.2 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.egyr.2020.05.010
Abdelrahman H. Hassan , Laura O’Donoghue , Violeta Sánchez-Canales , José M. Corberán , Jorge Payá , Henning Jockenhöfer

Abstract One of the bottlenecks for a wider implementation of renewable energies is the development of efficient energy storage systems which can compensate for the intermittency of renewable energy sources. Pumped thermal energy storage (PTES) is a very recent technology that can be a promising site-independent alternative to pumped hydro energy storage or compressed air energy storage, without the corresponding geological and environmental restrictions. Accordingly, this paper presents a full thermodynamic analysis of a PTES system consisting of a high-temperature heat pump (HTHP), which drives an organic Rankine cycle (ORC) by means of an intermediate high-temperature thermal energy storage system (HT-TES). The latter combines both latent and sensible heat thermal energy storage sub-systems to maximize the advantage of the refrigerant subcooling. After validating the proposed model, several parametric studies have been carried out to assess the system performance using different refrigerants and configurations, under a wide range of source and sink temperatures. The results show that for a system that employs the same refrigerant in both the HTHP and ORC, and for a latent heat thermal energy storage system at 133oC, R-1233zd(E) and R-1234ze(Z) present the best performance. Among all the cases studied with a latent heat thermal energy storage system at 133°C, the best system performance, also considering the impact on the environment, has been achieved employing R-1233zd(E) in the HTHP and Butene in the ORC. Such a system can theoretically reach a power ratio of 1.34 under HTHP source and ORC sink temperatures of 100 and 25°C, respectively.

中文翻译:

高温泵送热能储存系统的热力学分析:制冷剂选择、性能和局限性

摘要 可再生能源广泛应用的瓶颈之一是开发可以补偿可再生能源间歇性的高效储能系统。抽水蓄能 (PTES) 是一项非常新的技术,可以成为抽水蓄能或压缩空气储能的有前途的独立站点替代方案,而且没有相应的地质和环境限制。因此,本文对由高温热泵 (HTHP) 组成的 PTES 系统进行了完整的热力学分析,该系统通过中高温热能储存系统 (HT-TES) 驱动有机朗肯循环 (ORC)。 )。后者结合了潜热和显热热能存储子系统,以最大限度地发挥制冷剂过冷的优势。在验证了所提出的模型后,已经进行了多项参数研究,以评估在各种源和汇温度下使用不同制冷剂和配置的系统性能。结果表明,对于在 HTHP 和 ORC 中使用相同制冷剂的系统,以及对于 133oC 的潜热热能存储系统,R-1233zd(E) 和 R-1234ze(Z) 表现出最佳性能。在所有使用 133°C 的潜热热能存储系统研究的案例中,在 HTHP 中使用 R-1233zd(E) 和在 ORC 中使用丁烯实现了最佳系统性能,同时考虑了对环境的影响。
更新日期:2020-12-01
down
wechat
bug