当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical study for the flame deflector design of four-engine liquid rockets
Engineering Applications of Computational Fluid Mechanics ( IF 6.1 ) Pub Date : 2020-05-14 , DOI: 10.1080/19942060.2020.1761453
Zhitan Zhou 1 , Liangjun Zhang 2 , Guigao Le 1
Affiliation  

The thermal environment of four-engine liquid rocket exhaust plume impinging on the flame deflector with different impingement and uplift angles is analysed. The supersonic exhaust gas impinging model was established by using the compressible, multi-component, Reynolds-Averaged Navier-Stokes (RANS) equations with the finite volume method. A comparison between the numerical results and experimental data in the literature is made, which verified the validity and accuracy of the numerical model. Additionally, the flow fields of the four-engine rocket impinging on the flame deflector under different impingement and uplift angles are simulated. The results show that high temperatures on the deflector surface mainly occur on the impingement point or the cambered surface. A large impingement angle causes the reverse flow intensity to increase whilst a small angle causes the exhaust gas to deflect a little, a suitable uplift angle can smoothly guide the exhaust gas away from the deflector that the best thermal environment of the deflector channel appears at an impingement angle of 25°and an uplift angle of 5°. This study demonstrates that our model can effectively simulate the impinging flow field, and can be of use for the design of the flame deflector under the multi-engine rocket exhaust gas impact.



中文翻译:

四引擎液体火箭火焰导向设计的数值研究

分析了四引擎液体火箭排气羽撞击不同偏转角和上升角的​​导流板上的热环境。通过使用可压缩的多组分雷诺平均Navier-Stokes(RANS)方程和有限体积法,建立了超音速排气撞击模型。对数值结果与文献中的实验数据进行了比较,验证了数值模型的有效性和准确性。此外,还模拟了四引擎火箭在不同的冲击角和上升角下撞击在导流板上的流场。结果表明,偏转器表面上的高温主要发生在撞击点或曲面上。较大的撞击角会导致反向流动强度增加,而较小的角度会导致废气略微偏转,合适的上升角可以平稳地将废气引导离开偏转器,从而使偏转器通道的最佳热环境出现在撞击角度为25°,上升角度为5°。这项研究表明,我们的模型可以有效地模拟撞击流场,并且可以用于多引擎火箭尾气冲击下的导流板设计。

更新日期:2020-05-14
down
wechat
bug