当前位置: X-MOL 学术Entropy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modules or Mean-Fields?
Entropy ( IF 2.7 ) Pub Date : 2020-05-14 , DOI: 10.3390/e22050552
Thomas Parr , Noor Sajid , Karl J. Friston

The segregation of neural processing into distinct streams has been interpreted by some as evidence in favour of a modular view of brain function. This implies a set of specialised ‘modules’, each of which performs a specific kind of computation in isolation of other brain systems, before sharing the result of this operation with other modules. In light of a modern understanding of stochastic non-equilibrium systems, like the brain, a simpler and more parsimonious explanation presents itself. Formulating the evolution of a non-equilibrium steady state system in terms of its density dynamics reveals that such systems appear on average to perform a gradient ascent on their steady state density. If this steady state implies a sufficiently sparse conditional independency structure, this endorses a mean-field dynamical formulation. This decomposes the density over all states in a system into the product of marginal probabilities for those states. This factorisation lends the system a modular appearance, in the sense that we can interpret the dynamics of each factor independently. However, the argument here is that it is factorisation, as opposed to modularisation, that gives rise to the functional anatomy of the brain or, indeed, any sentient system. In the following, we briefly overview mean-field theory and its applications to stochastic dynamical systems. We then unpack the consequences of this factorisation through simple numerical simulations and highlight the implications for neuronal message passing and the computational architecture of sentience.

中文翻译:

模块还是平均场?

将神经处理分为不同的流已被一些人解释为支持大脑功能模块化观点的证据。这意味着一组专门的“模块”,在与其他模块共享此操作的结果之前,每个模块都在与其他大脑系统隔离的情况下执行特定类型的计算。根据对随机非平衡系统(如大脑)的现代理解,出现了一种更简单、更简洁的解释。根据密度动力学来表述非平衡稳态系统的演化表明,这些系统平均而言似乎在其稳态密度上执行梯度上升。如果这个稳定状态意味着一个足够稀疏的条件独立结构,那么这支持平均场动力学公式。这将系统中所有状态的密度分解为这些状态的边际概率的乘积。这种因式分解使系统具有模块化外观,从某种意义上说,我们可以独立解释每个因素的动态。然而,这里的论点是,是因式分解,而不是模块化,产生了大脑的功能解剖结构,甚至任何有感知的系统。下面,我们简要概述平均场理论及其在随机动力系统中的应用。然后,我们通过简单的数值模拟解开这种分解的后果,并强调对神经元信息传递和感知计算架构的影响。这种因式分解使系统具有模块化外观,从某种意义上说,我们可以独立解释每个因素的动态。然而,这里的论点是,是因式分解,而不是模块化,产生了大脑的功能解剖结构,甚至任何有感知的系统。下面,我们简要概述平均场理论及其在随机动力系统中的应用。然后,我们通过简单的数值模拟解开这种分解的后果,并强调对神经元信息传递和感知计算架构的影响。这种因式分解使系统具有模块化外观,从某种意义上说,我们可以独立解释每个因素的动态。然而,这里的论点是,是因式分解,而不是模块化,产生了大脑的功能解剖结构,甚至任何有感知的系统。下面,我们简要概述平均场理论及其在随机动力系统中的应用。然后,我们通过简单的数值模拟解开这种分解的后果,并强调对神经元信息传递和感知计算架构的影响。这产生了大脑的功能解剖结构,或者实际上是任何有知觉的系统。下面,我们简要概述平均场理论及其在随机动力系统中的应用。然后,我们通过简单的数值模拟解开这种分解的后果,并强调对神经元信息传递和感知计算架构的影响。这产生了大脑的功能解剖结构,或者实际上是任何有知觉的系统。下面,我们简要概述平均场理论及其在随机动力系统中的应用。然后,我们通过简单的数值模拟解开这种分解的后果,并强调对神经元信息传递和感知计算架构的影响。
更新日期:2020-05-14
down
wechat
bug