当前位置: X-MOL 学术Water Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Contributions of Pore‐Scale Mixing and Mechanical Dispersion to Reaction During Active Spreading by Radial Groundwater Flow
Water Resources Research ( IF 5.4 ) Pub Date : 2020-07-06 , DOI: 10.1029/2019wr026276
Roseanna M. Neupauer 1 , Lauren J. Sather 1, 2 , David C. Mays 3 , John P. Crimaldi 1 , Eric J. Roth 1, 4
Affiliation  

Spreading and mixing are complementary processes that promote reaction of two reactive aqueous solutes present in contiguous plumes in groundwater. Spreading reconfigures the plume geometry, elongating the interface between the plumes, while mixing increases the volume of aquifer occupied by each plume, bringing the solute molecules together to react. Since reaction only occurs where the two solute plumes are in contact with each other, local mechanisms that drive flow and transport near the interface between the plumes control the amount of reaction. This work uses local characteristics of the plumes and the flow field near the plume interface to analyze the relative contributions of pore‐scale mixing and mechanical dispersion to instantaneous, irreversible, bimolecular reaction in a homogeneous aquifer with active spreading caused by radial flow from a well. Two solutes are introduced in sequence at the well, creating concentric circular plumes. We allow for incomplete mixing of the solutes in the pore space, by modeling the pore space as a segregated compartment and a mixed compartment with first‐order mass transfer between the two compartments. We develop semi‐analytical expressions for concentrations of the solutes in both compartments. We found that the relative contribution of mechanical dispersion to reaction increases over time and also increases due to increases in the Peclet number, in the relative source concentration of the chasing solute, and in the mass transfer rate from the segregated compartment to the mixed compartment of the pore space.

中文翻译:

径向地下水流主动扩散过程中孔隙尺度混合和机械分散对反应的贡献

扩散和混合是互补的过程,可促进地下水中连续羽流中存在的两种反应性水溶质的反应。扩散重新配置了羽状结构,延长了羽状结构之间的界面,同时混合增加了每个羽状结构所占含水层的体积,使溶质分子反应在一起。由于仅在两个溶质羽流相互接触的地方发生反应,因此驱动流和流在羽流之间的界面附近流动的局部机制控制了反应量。这项工作利用了羽流的局部特征和羽流界面附近的流场来分析孔隙尺度混合和机械扩散对瞬时,不可逆,均质含水层中的双分子反应,由于井的径向流而引起主动扩散。在井中依次引入两种溶质,形成同心的圆形羽状流。通过将孔隙空间建模为隔离隔间和两个隔间之间具有一级质量传递的混合隔间,我们可以实现孔隙空间中溶质的不完全混合。我们针对两个隔室中的溶质浓度开发了半分析表达式。我们发现机械分散对反应的相对贡献随着时间的推移而增加,并且还由于Peclet数,追逐溶质的相对源浓度以及从分离室到混合室的传质速率的增加而增加。孔隙空间。在井中依次引入两种溶质,形成同心的圆形羽状流。通过将孔隙空间建模为隔离隔间和两个隔间之间具有一级质量传递的混合隔间,我们可以实现孔隙空间中溶质的不完全混合。我们针对两个隔室中的溶质浓度开发了半分析表达式。我们发现机械分散对反应的相对贡献随着时间的推移而增加,并且还由于Peclet数,追逐溶质的相对源浓度以及从分离室到混合室的传质速率的增加而增加。孔隙空间。在井中依次引入两种溶质,形成同心的圆形羽状流。通过将孔隙空间建模为隔离隔间和两个隔间之间具有一级质量传递的混合隔间,我们可以实现孔隙空间中溶质的不完全混合。我们针对两个隔室中的溶质浓度开发了半分析表达式。我们发现机械分散对反应的相对贡献随着时间的推移而增加,并且还由于Peclet数,追赶溶质的相对源浓度以及从分离室到混合室的传质速率的增加而增加。孔隙空间。通过将孔隙空间建模为隔离隔室和混合隔室,并在两个隔室之间进行一级质量传递。我们针对两个隔室中的溶质浓度开发了半分析表达式。我们发现机械分散对反应的相对贡献随着时间的推移而增加,并且还由于Peclet数,追逐溶质的相对源浓度以及从分离室到混合室的传质速率的增加而增加。孔隙空间。通过将孔隙空间建模为隔离隔室和混合隔室,并在两个隔室之间进行一级质量传递。我们针对两个隔室中的溶质浓度开发了半分析表达式。我们发现机械分散对反应的相对贡献随着时间的推移而增加,并且还由于Peclet数,追赶溶质的相对源浓度以及从分离室到混合室的传质速率的增加而增加。孔隙空间。
更新日期:2020-07-06
down
wechat
bug