当前位置: X-MOL 学术Eur. Phys. J. B › 论文详情
A general formulation for the magnetic oscillations in two dimensional systems
The European Physical Journal B ( IF 1.347 ) Pub Date : 2020-05-18 , DOI: 10.1140/epjb/e2020-10088-3
Federico Escudero, Juan Sebastián Ardenghi, Paula Jasen

Abstract We develop a general formalism for the magnetic oscillations (MO) in two dimensional (2D) systems. We consider general 2D Landau levels, which may depend on other variable or indices, besides the perpendicular magnetic field. In the ground state, we obtain expressions for the MO phase and amplitude. From this we use a Fourier expansion to write the MO, with the first term being a sawtooth oscillation. We also consider the effects of finite temperature, impurities or lattice imperfections, assuming a general broadening of the Landau levels. We develop two methods for describing these damping effects in the MO. One in terms of the occupancy of the Landau levels, the other in terms of reduction factors, which results in a generalization of the Lifshits-Kosevich (LK) formula. We show that the first approach is particularly useful at very low damping, when only the states close to the Fermi energy are excited. In contrast, the LK formula may be more convenient at higher damping, when only few terms are needed in its harmonic expansion. We compare different damping situations, showing how the MO are broadened in each case. The general formulation presented allows to relate the properties of the MO with those of the 2D systems. Graphical abstract
更新日期:2020-05-14

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug