当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling and Analyses of Fiber Fabric and Fabric-Reinforced Polymers under Hypervelocity Impact Using Smooth Particle Hydrodynamics
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.ijimpeng.2020.103586
Shicao Zhao , Zhenfei Song , Horacio D. Espinosa

Abstract In a hypervelocity impact (HVI) event, fiber fabrics and the fabric-reinforced polymers (FRP) would undergo shock compression, large deformation and fragmentation. The smooth particle hydrodynamics (SPH) approach was applied to assess the shielding performance of the fabric and its composite structure in a Whipple shield. In the fabric model, a fiber is built by SPH particles to properly reproduce the spreading feature of fragmented fabric under HVI. The simulations display that an aluminum panel, serving as the bumper of a Whipple, has the better performance in debris spreading than fabric layers. In the stuffed layer of a Whipple, the widely used plain weave fabric has the similar performance as the 3D weave both in debris spreading and speed retarding. The fabric model is further developed and extended to FRP by building fiber and polymer materials separately based on specific geometries. The computations illustrate that the FRP/Aluminum hybrid laminate can efficiently reduce the shock peak under HVI and meanwhile produce large deformation for kinetic energy absorption, in good agreement with experimental measurements. It applies to the rear wall of a Whipple which should resist the HVI of a debris cloud, forming a high but short shock pulse. The further optimization of the hybrid laminate was made by using a corrugated aluminum plate, a gap and a Kevlar fabric layer, leading to the considerable reduction of the laminate areal mass in a prescribed thickness.

中文翻译:

使用光滑粒子流体动力学对超高速冲击下的纤维织物和织物增强聚合物进行建模和分析

摘要 在超高速撞击 (HVI) 事件中,纤维织物和织物增强聚合物 (FRP) 会发生冲击压缩、大变形和破碎。应用光滑粒子流体动力学 (SPH) 方法来评估织物及其复合结构在 Whipple 屏蔽中的屏蔽性能。在织物模型中,纤维由 SPH 粒子构建,以正确再现 HVI 下碎片织物的铺展特征。模拟结果表明,作为 Whipple 保险杠的铝板在碎片扩散方面比织物层具有更好的性能。在Whipple的填充层中,广泛使用的平纹织物在碎屑扩散和减速方面具有与3D织物相似的性能。通过基于特定几何形状分别构建纤维和聚合物材料,织物模型进一步发展并扩展到 FRP。计算表明,FRP/Aluminum 混合层压板可以有效地降低 HVI 下的冲击峰值,同时产生大的动能吸收变形,与实验测量结果一致。它适用于 Whipple 的后壁,它应该抵抗碎片云的 HVI,形成一个高而短的冲击脉冲。混合层压板的进一步优化是通过使用波纹铝板、间隙和 Kevlar 织物层进行的,导致在规定厚度下层压板面积质量的显着减少。计算表明,FRP/Aluminum 混合层压板可以有效地降低 HVI 下的冲击峰值,同时产生大的动能吸收变形,与实验测量结果一致。它适用于 Whipple 的后壁,它应该抵抗碎片云的 HVI,形成一个高而短的冲击脉冲。混合层压板的进一步优化是通过使用波纹铝板、间隙和 Kevlar 织物层进行的,导致在规定厚度下层压板的面积质量显着减少。计算表明,FRP/Aluminum 混合层压板可以有效地降低 HVI 下的冲击峰值,同时产生大的动能吸收变形,与实验测量结果一致。它适用于 Whipple 的后壁,它应该抵抗碎片云的 HVI,形成一个高而短的冲击脉冲。混合层压板的进一步优化是通过使用波纹铝板、间隙和 Kevlar 织物层进行的,导致在规定厚度下层压板的面积质量显着减少。
更新日期:2020-10-01
down
wechat
bug