当前位置: X-MOL 学术Fluid Phase Equilibr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solid-fluid equilibrium measurements of benzene in methane and implications for freeze-out at LNG conditions
Fluid Phase Equilibria ( IF 2.6 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.fluid.2020.112609
Arman Siahvashi , Saif ZS. Al Ghafri , Eric F. May

Abstract Information about the solubility of benzene in light hydrocarbons is particularly important for the prediction of freeze-out risk in LNG production. Engineering models developed to predict this risk need to be tested against high quality experimental data covering a range of conditions to assess their validity. A visual high pressure sapphire cell, housed in a specialized cryogenic environmental chamber, was employed to measure the melting temperature of methane + benzene binary systems at temperatures from 120 K, pressures up to 22 MPa, and benzene concentrations ranging from 120 to 1012 parts per million (ppm) by mole. The results obtained were compared with literature data and the predictions of the thermodynamic model implemented in the software package ThermoFAST. These comparisons reveal that the literature data are in fact consistent with each other, and with the measurements and predictions made in this work, within their experimental scatter. ThermoFAST was able to represent the melting temperatures obtained for benzene concentrations of 1012 and 199 ppm with r.m.s deviations of 0.7 and 3.4 K, respectively. At 120 ppm and 6.3 MPa, the measured solid-liquid equilibrium (SLE) temperature deviated from the ThermoFAST prediction by less than 2 K. However, at the higher temperature conditions representative of solid vapour equilibrium (SVE), the data measured for mixtures with concentrations at 199 and 750 ppm benzene deviated from the model predictions by up to 5 K.

中文翻译:

甲烷中苯的固液平衡测量及其对 LNG 条件下冻结的影响

摘要 苯在轻烃中的溶解度信息对于预测 LNG 生产中的冻结风险尤为重要。为预测这种风险而开发的工程模型需要针对涵盖一系列条件的高质量实验数据进行测试,以评估其有效性。一个可视化的高压蓝宝石电池,安装在一个专门的低温环境室中,用于测量甲烷 + 苯二元系统的熔化温度,温度为 120 K,压力高达 22 MPa,苯浓度范围为 120 至 1012 份/百万 (ppm) 摩尔。将获得的结果与文献数据和在软件包 ThermoFAST 中实现的热力学模型的预测进行比较。这些比较表明,文献数据实际上彼此一致,并且与本工作中所做的测量和预测一致,在它们的实验分散范围内。ThermoFAST 能够表示苯浓度为 1012 ppm 和 199 ppm 时获得的熔化温度,均方根偏差分别为 0.7 和 3.4 K。在 120 ppm 和 6.3 MPa 下,测得的固液平衡 (SLE) 温度与 ThermoFAST 预测的偏差小于 2 K。然而,在代表固体蒸气平衡 (SVE) 的较高温度条件下,测量的数据与199 和 750 ppm 苯的浓度与模型预测的偏差高达 5 K。ThermoFAST 能够表示苯浓度为 1012 ppm 和 199 ppm 时获得的熔化温度,均方根偏差分别为 0.7 和 3.4 K。在 120 ppm 和 6.3 MPa 下,测得的固液平衡 (SLE) 温度与 ThermoFAST 预测的偏差小于 2 K。然而,在代表固体蒸气平衡 (SVE) 的较高温度条件下,测量的数据与199 和 750 ppm 苯的浓度与模型预测的偏差高达 5 K。ThermoFAST 能够表示苯浓度为 1012 ppm 和 199 ppm 时获得的熔化温度,均方根偏差分别为 0.7 和 3.4 K。在 120 ppm 和 6.3 MPa 下,测得的固液平衡 (SLE) 温度与 ThermoFAST 预测的偏差小于 2 K。然而,在代表固体蒸气平衡 (SVE) 的较高温度条件下,测量的数据与199 和 750 ppm 苯的浓度与模型预测的偏差高达 5 K。
更新日期:2020-09-01
down
wechat
bug