当前位置: X-MOL 学术J. Therm. Spray Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Residual Stress in High-Velocity Impact Coatings: Parametric Finite Element Analysis Approach
Journal of Thermal Spray Technology ( IF 3.1 ) Pub Date : 2020-05-13 , DOI: 10.1007/s11666-020-01026-5
Felipe Oviedo , Alfredo Valarezo

High-velocity impact coatings are produced by techniques such as HVOF, HVAF, cold spraying, warm spraying, and supersonic plasma spraying. All these processes have in common the impact of particles at high velocities that produce peening of the surface and induce compressive residual stresses in the radial and axial orientations of the impact. If the process involves a significant heat input to the particles, quenching of splats and thermal mismatch between coating and substrate adds residual stress to the peening, and subsequently defines the final stress state. Through a parametric finite element model of coating formation, physical variables—including particle temperature and velocity, particle mass, particle morphology and deposition temperature—are studied to observe their effect on residual stresses, and define their possible manipulation to design coatings of desired average residual stress. To allow key parameter selection, a contour map of SS316 feedstock deposited on SS316 substrate is produced based on the parametric modeling of particle impact (via an explicit FE model) and the subsequent layer-by-layer coating formation (via an implicit FE model) employing ABAQUS® code. The Johnson–Cook model for high strain, strain rate and temperature is used as the constitutive equation for the study of impact and rapid cooling.

中文翻译:

高速冲击涂层中的残余应力:参数化有限元分析方法

高速冲击涂层通过HVOF、HVAF、冷喷涂、温喷涂和超音速等离子喷涂等技术生产。所有这些过程都有一个共同点,即粒子在高速下的冲击会产生表面喷丸,并在冲击的径向和轴向方向上产生压缩残余应力。如果该过程涉及对颗粒的大量热输入,则喷溅的淬火和涂层与基材之间的热失配会增加喷丸的残余应力,并随后定义最终应力状态。通过涂层形成的参数化有限元模型,研究物理变量——包括粒子温度和速度、粒子质量、粒子形态和沉积温度,以观察它们对残余应力的影响,并定义它们可能的操作以设计所需平均残余应力的涂层。为了选择关键参数,基于粒子影响的参数化建模(通过显式有限元模型)和随后的逐层涂层形成(通过隐式有限元模型),生成了沉积在 SS316 基材上的 SS316 原料的等高线图使用 ABAQUS® 代码。高应变、应变率和温度的 Johnson-Cook 模型用作研究冲击和快速冷却的本构方程。沉积在 SS316 基材上的 SS316 原料的等高线图是基于使用 ABAQUS® 代码的粒子冲击参数建模(通过显式有限元模型)和随后的逐层涂层形成(通过隐式有限元模型)生成的。高应变、应变率和温度的 Johnson-Cook 模型用作研究冲击和快速冷却的本构方程。沉积在 SS316 基材上的 SS316 原料的等高线图是基于使用 ABAQUS® 代码的粒子冲击参数建模(通过显式有限元模型)和随后的逐层涂层形成(通过隐式有限元模型)生成的。高应变、应变率和温度的 Johnson-Cook 模型用作研究冲击和快速冷却的本构方程。
更新日期:2020-05-13
down
wechat
bug