当前位置: X-MOL 学术Glasg. Math. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
AN EXTENSION OF A RESULT OF ERDŐS AND ZAREMBA
Glasgow Mathematical Journal ( IF 0.5 ) Pub Date : 2020-05-13 , DOI: 10.1017/s0017089520000129
MICHEL JEAN GEORGES WEBER

Erdös and Zaremba showed that $ \limsup_{n\to \infty} \frac{\Phi(n)}{(\log\log n)^2}=e^\gamma$ , γ being Euler’s constant, where $\Phi(n)=\sum_{d|n} \frac{\log d}{d}$ .We extend this result to the function $\Psi(n)= \sum_{d|n} \frac{(\log d )(\log\log d)}{d}$ and some other functions. We show that $ \limsup_{n\to \infty}\, \frac{\Psi(n)}{(\log\log n)^2(\log\log\log n)}\,=\, e^\gamma$ . The proof requires a new approach. As an application, we prove that for any $\eta>1$ , any finite sequence of reals $\{c_k, k\in K\}$ , $\sum_{k,\ell\in K} c_kc_\ell \, \frac{\gcd(k,\ell)^{2}}{k\ell} \le C(\eta) \sum_{\nu\in K} c_\nu^2(\log\log\log \nu)^\eta \Psi(\nu)$ , where C(η) depends on η only. This improves a recent result obtained by the author.

中文翻译:

ERDŐS 和 ZAREMBA 的结果的扩展

Erdös 和 Zaremba 表明$ \limsup_{n\to \infty} \frac{\Phi(n)}{(\log\log n)^2}=e^\gamma$,γ为欧拉常数,其中$\Phi(n)=\sum_{d|n} \frac{\log d}{d}$.我们将此结果扩展到函数$\Psi(n)= \sum_{d|n} \frac{(\log d )(\log\log d)}{d}$和其他一些功能。我们表明$ \limsup_{n\to \infty}\, \frac{\Psi(n)}{(\log\log n)^2(\log\log\log n)}\,=\, e^\gamma $. 证明需要一种新的方法。作为一个应用程序,我们证明对于任何$\eta>1$, 任何有限实数序列$\{c_k, k\in K\}$,$\sum_{k,\ell\in K} c_kc_\ell \, \frac{\gcd(k,\ell)^{2}}{k\ell} \le C(\eta) \sum_{\nu \in K} c_\nu^2(\log\log\log \nu)^\eta \Psi(\nu)$, 在哪里C(η) 取决于η只要。这改进了作者最近获得的结果。
更新日期:2020-05-13
down
wechat
bug