当前位置: X-MOL 学术Results Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Some q -supercongruences from Watson’s $$_8\phi _7$$8ϕ7 Transformation Formula
Results in Mathematics ( IF 2.2 ) Pub Date : 2020-04-24 , DOI: 10.1007/s00025-020-01195-3
Xiaoxia Wang , Mingbing Yue

Recently, Jana and Kalita proved the following supercongruences involving rising factorials \((\frac{1}{d})_k^3\):

$$\begin{aligned}&\sum _{k=0}^{N} (-1)^k (2dk+1)\frac{(\frac{1}{d})_k^3}{k!^3}\\&\quad \equiv {\left\{ \begin{array}{ll} p^r&{}\pmod {p^{r+2}},\quad \text {if } r \text { is even};\\ (-1)^{\frac{(p-d+1)r}{d}}(d-1)p^r&{}\pmod {p^{r+2}},\quad \text {if } r \text { is odd}; \end{array}\right. }\\&\sum _{k=0}^{N} (-1)^k (2dk+1)^3\frac{(\frac{1}{d})_k^3}{k!^3}\\&\quad \equiv {\left\{ \begin{array}{ll} -3p^r&{}\pmod {p^{r+2}},\quad \text {if } r \text { is even};\\ (-1)^{\frac{(p+1)r}{d}}3(d-1)p^r&{}\pmod {p^{r+2}},\quad \text {if } r \text { is odd}, \end{array}\right. } \end{aligned}$$

where \(N={\left\{ \begin{array}{ll} \frac{p^r-1}{d}, \quad &{}\text {if } r \text { is even};\\ \frac{(d-1)p^r-1}{d},\quad &{}\text {if } r \text { is odd}.\end{array}\right. }\) From Watson’s \(_8\phi _7\) transformation formula, we give q-analogues of the above supercongruences, generalizing some previous conjectural results of Van Hamme. Our proof uses the ‘creative microscoping’ method which was introduced by Guo and Zudilin.



中文翻译:

沃森的$$ _ 8 \ phi _7 $$ 8ϕ7转换公式的q-超同余

最近,Jana和Kalita证明了以下涉及乘数阶乘\((\ frac {1} {d})_ k ^ 3 \)的超同余

$$ \ begin {aligned}&\ sum _ {k = 0} ^ {N}(-1)^ k(2dk + 1)\ frac {(\ frac {1} {d})_ k ^ 3} {k !^ 3} \\&\ quad \ equiv {\ left \ {\ begin {array} {ll} p ^ r&{} \ pmod {p ^ {r + 2}},\ quad \ text {if} r \文字{is even}; \\(-1)^ {\ frac {(p-d + 1)r} {d}}(d-1)p ^ r&{} \ pmod {p ^ {r + 2} },\ quad \ text {if} r \ text {是奇数}; \ end {array} \ right。} \\&\ sum _ {k = 0} ^ {N}(-1)^ k(2dk + 1)^ 3 \ frac {(\ frac {1} {d})_ k ^ 3} {k!^ 3} \\&\ quad \ equiv {\ left \ {\ begin {array} {ll} -3p ^ r&{} \ pmod {p ^ {r + 2}},\ quad \ text {if} r \ text {is even}; \\(-1)^ {\ frac {(p + 1)r} {d}} 3(d-1)p ^ r&{} \ pmod {p ^ {r + 2}}, \ quad \ text {if} r \ text {是奇数},\ end {array} \ right。} \ end {aligned} $$

其中\(N = {\ left \ {\ begin {array} {ll} \ frac {p ^ r-1} {d},\ quad&{} \ text {if} r \ text {is even}; \ \ \ frac {(d-1)p ^ r-1} {d},\ quad&{} \ text {if} r \ text {isodd}。\ end {array} \ right。} \)来自Watson's \(_ 8 \ phi _7 \)转换公式,我们给出上述超同余的q-模拟,归纳了Van Hamme先前的一些猜想结果。我们的证明使用了郭和祖迪林引入的“创意微观范围”方法。

更新日期:2020-04-24
down
wechat
bug