当前位置: X-MOL 学术Period. Math. Hung. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A note on the simultaneous Pell equations $$x^2-(a^2-1)y^2=1$$x2-(a2-1)y2=1 and $$y^2-bz^2=1$$y2-bz2=1
Periodica Mathematica Hungarica ( IF 0.8 ) Pub Date : 2020-04-14 , DOI: 10.1007/s10998-020-00334-1
Xing-Wang Jiang

Let $$a>1,b$$ be two positive integers where the square-free part of b is 2pq with p, q two distinct odd primes. Recently, Cipu (Proc Am Math Soc 146:983–992, 2018) proved that if one of the following conditions holds: (i) $$2a^2-1$$ is not a perfect square, (ii) $$\{p\pmod 8,q\pmod 8\}\ne \{1,3\}$$, then the equations $$\begin{aligned} x^2-(a^2-1)y^2=1 \quad \text {and} \quad y^2-bz^2=1 \end{aligned}$$have solutions in positive integers if and only if $$8a^2(2a^2-1)/b$$ is a perfect square. When it exists, the solution is $$(x,y,z)=(4a^3-3a,4a^2-1, \sqrt{8a^2(2a^2-1)/b})$$. In this paper, we completely solve these equations when the square-free part of b is 2pq.

中文翻译:

关于同步佩尔方程 $$x^2-(a^2-1)y^2=1$$x2-(a2-1)y2=1 和 $$y^2-bz^2=1$ 的注释$y2-bz2=1

令 $$a>1,b$$ 是两个正整数,其中 b 的无平方部分是 2pq,其中 p, q 有两个不同的奇素数。最近,Cipu (Proc Am Math Soc 146:983–992, 2018) 证明,如果以下条件之一成立:(i) $$2a^2-1$$ 不是完全平方数,(ii) $$\ {p\pmod 8,q\pmod 8\}\ne \{1,3\}$$,那么方程 $$\begin{aligned} x^2-(a^2-1)y^2=1 \quad \text {and} \quad y^2-bz^2=1 \end{aligned}$$有正整数解当且仅当 $$8a^2(2a^2-1)/b$$是一个完美的正方形。当它存在时,解为 $$(x,y,z)=(4a^3-3a,4a^2-1, \sqrt{8a^2(2a^2-1)/b})$$。在本文中,当 b 的无平方部分为 2pq 时,我们完全求解这些方程。
更新日期:2020-04-14
down
wechat
bug