当前位置: X-MOL 学术Quant. InfraRed Thermogr. J. › 论文详情
Exploring deep learning networks for tumour segmentation in infrared images
Quantitative InfraRed Thermography Journal ( IF 1.231 ) Pub Date : 2019-06-11 , DOI: 10.1080/17686733.2019.1619355
Siva Teja Kakileti; Aman Dalmia; Geetha Manjunath

Infrared imaging has been used for detecting early-stage breast abnormalities. However, manual interpretation of these images is subjective and error prone. Automated analysis of thermal images using artificial intelligence increases the accuracy of detecting breast cancer and enables use in breast cancer screening programmes. A crucial step in automated analysis is tumour segmentation, which is the focus of this paper. Prior algorithms used for tumour segmentation involve clustering, thresholding and active contour techniques that rely on low-level image features generated from manual feature engineering. The recent advances in deep learning, especially convolutional neural networks (CNNs), are slowly making them the de-facto method for automated image analysis. In this paper, we explore various CNN architectures for semantic segmentation starting from naive patch-based classifiers to more sophisticated ones such as encoder-decoder architecture for detecting the hotspots in the thermal image. We also show that encoder-decoder architectures perform better when compared to patch-based classifiers in terms of accuracy, Dice index, Jaccard index and inference time even with a smaller dataset.
更新日期:2019-06-11

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug