当前位置: X-MOL 学术Int. J. Archit. Heritage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seismic Performances of Different Spandrel Wall Strengthening Techniques in Masonry Arch Bridges
International Journal of Architectural Heritage ( IF 2.4 ) Pub Date : 2020-02-04 , DOI: 10.1080/15583058.2020.1719234
Alemdar Bayraktar 1 , Emin Hökelekli 2
Affiliation  

ABSTRACT

The majority of historical masonry bridges were constructed early years and they were not originally designed to carry the extent of loads imposed on them by current vehicular traffic and seismic loads. Therefore, many existing masonry arch bridges can need reassessment and upgrading. In addition to arch elements, the most vulnerable structural elements of masonry arch bridges under transverse seismic loads are the spandrel walls. Spandrel wall failures are local failures, however they affect the serviceability of the bridge considerably. The present paper aims to determine transverse nonlinear seismic performances of the spandrel walls of masonry arch bridges strengthened with different techniques, which are i) take down and rebuilt with tapered section instead of straight section, ii) using transverse tie bars, and iii) covering with a Fabric Reinforced Cementitious Matrix (FRCM) composite. The concrete Damage Plasticity (CDP) material model adjusted to masonry structures for the masonry units, Mohr–Coulomb material model for the backfill, and interface interactions between the backfill, spandrel walls, arch and FRCM units are considered in the 3D finite element model of the bridge. Modal, nonlinear static and seismic responses of the spandrel walls strengthened with the above three different techniques are determined using the finite element method, and the results obtained from the unstrengthened and strengthened models are evaluated and compared with each other. Some recommendations are presented for the strengthening of the spandrel walls in masonry arch bridges.



中文翻译:

砌体拱桥不同拱肩墙加固技术的抗震性能

摘要

大多数历史悠久的砖石桥梁都是早年建造的,它们最初的设计目的不是为了承受当前车辆交通和地震荷载施加在它们上的荷载范围。因此,许多现有的砖石拱桥可能需要重新评估和升级。除了拱形构件,砌体拱桥在横向地震荷载作用下最脆弱的结构构件是拱肩墙。拱肩墙故障是局部故障,但它们会显着影响桥梁的可维修性。本文旨在确定采用不同技术加固的砌体拱桥拱肩墙的横向非线性抗震性能,包括 i) 拆除并用锥形截面代替直截面重建,ii) 使用横向拉杆,iii) 用织物增强水泥基 (FRCM) 复合材料覆盖。在 3D 有限元模型中考虑了针对砌体单元调整为砖石结构的混凝土损伤塑性 (CDP) 材料模型、用于回填的 Mohr-Coulomb 材料模型以及回填、拱肩墙、拱和 FRCM 单元之间的界面相互作用。桥。使用有限元方法确定采用上述三种不同技术加固的拱肩墙的模态、非线性静力和地震响应,并对未加固和加固模型获得的结果进行评估和相互比较。对砌体拱桥拱肩墙的加固提出了一些建议。在 3D 有限元模型中考虑了针对砌体单元调整为砖石结构的混凝土损伤塑性 (CDP) 材料模型、用于回填的 Mohr-Coulomb 材料模型以及回填、拱肩墙、拱和 FRCM 单元之间的界面相互作用。桥。使用有限元方法确定采用上述三种不同技术加固的拱肩墙的模态、非线性静力和地震响应,并对未加固和加固模型获得的结果进行评估和相互比较。对砌体拱桥拱肩墙的加固提出了一些建议。在 3D 有限元模型中考虑了针对砌体单元调整为砖石结构的混凝土损伤塑性 (CDP) 材料模型、用于回填的 Mohr-Coulomb 材料模型以及回填、拱肩墙、拱和 FRCM 单元之间的界面相互作用。桥。使用有限元方法确定采用上述三种不同技术加固的拱肩墙的模态、非线性静力和地震响应,并对未加固和加固模型获得的结果进行评估和相互比较。对砌体拱桥拱肩墙的加固提出了一些建议。在桥梁的 3D 有限元模型中考虑了拱肩墙、拱和 FRCM 单元。使用有限元方法确定采用上述三种不同技术加固的拱肩墙的模态、非线性静力和地震响应,并对未加固和加固模型获得的结果进行评估和相互比较。对砌体拱桥拱肩墙的加固提出了一些建议。在桥梁的 3D 有限元模型中考虑了拱肩墙、拱和 FRCM 单元。使用有限元方法确定采用上述三种不同技术加固的拱肩墙的模态、非线性静力和地震响应,并对未加固和加固模型获得的结果进行评估和相互比较。对砌体拱桥拱肩墙的加固提出了一些建议。并对从未强化和强化模型获得的结果进行评估和相互比较。对砌体拱桥拱肩墙的加固提出了一些建议。并对从未强化和强化模型获得的结果进行评估和相互比较。对砌体拱桥拱肩墙的加固提出了一些建议。

更新日期:2020-02-04
down
wechat
bug