当前位置: X-MOL 学术Combust. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multifunctional Graphene-Based Additives for Enhanced Combustion of Cracked Hydrocarbon Fuels under Supercritical Conditions
Combustion Science and Technology ( IF 1.9 ) Pub Date : 2020-03-20 , DOI: 10.1080/00102202.2020.1737033
Hyung Sub Sim 1 , Richard A. Yetter 1 , Terrence L. Connell 1 , Daniel M. Dabbs 2 , Ilhan A. Aksay 2
Affiliation  

As a particulate fuel additive, functionalized graphene sheets (FGS), with and without the decoration of nanoparticles, provide a means to form stable colloids with liquid hydrocarbons, act as in situ catalysts, and prevent attached nanoparticles from agglomerating or sintering during heating. Recent pyrolysis experiments and simulations have shown the synergetic effect of Pt and FGS structures accelerating fuel conversion and hydrogen formation. In this paper, the role of graphene-based additives (with and without platinum (Pt) nanoparticles) on enhancing the ignition and combustion characteristics of cracked n-dodecane hydrocarbon fuels under supercritical conditions is examined. Supercritical ignition and combustion experiments were conducted using a high pressure and high temperature windowed combustion chamber coupled to a supercritical fuel pyrolysis reactor. The combustion experiments indicated that the presence of small amounts of particulate additives (100 ppmw) to the fuel can reduce ignition times and increase subsequent combustion rates. In particular, the addition of FGS-supported Pt nanoparticles reduced ignition delay times by nearly a factor of 3 (12.4 to 4.2 ms), increased spray spreading angles by approximately 32.0% (15.4 to 20.3°), reduced the flame liftoff length by 54.0% (1.74 to 0.8 mm), and demonstrated an increase in fuel conversion for a fixed reaction time of 35.0% relative to the pure fuel baseline. These results support the notion that nanostructured fuel additives have the potential to enhance both the heat sink capacity and combustion performance of liquid hydrocarbon fuels for their use in advanced high speed propulsion systems.



中文翻译:

多功能石墨烯基添加剂,用于在超临界条件下增强裂解烃燃料的燃烧

作为一种颗粒状燃料添加剂,带有或不带有纳米颗粒装饰的功能化石墨烯片(FGS)提供了一种与液态烃形成稳定胶体的方法,可作为原位材料催化剂,并防止附着的纳米粒子在加热过程中结块或烧结。最近的热解实验和模拟表明,Pt和FGS结构的协同作用加快了燃料转化和氢的形成。在本文中,研究了石墨烯基添加剂(有和没有铂(Pt)纳米颗粒)在增强超临界条件下裂化正十二烷烃燃料的着火和燃烧特性方面的作用。使用与超临界燃料热解反应器连接的高压高温开窗燃烧室进行了超临界点火和燃烧实验。燃烧实验表明,燃料中存在少量颗粒状添加剂(100 ppmw)可以减少点火时间并提高随后的燃烧速率。特别是,加入FGS负载的Pt纳米颗粒可将点火延迟时间减少近3倍(12.4至4.2 ms),将喷雾扩散角增加约32.0%(15.4至20.3°),将火焰剥离长度减少54.0 %(1.74至0.8mm),并且证明相对于纯燃料基线,对于固定的反应时间,燃料转化率增加了35.0%。这些结果支持这样的观点,即纳米结构燃料添加剂具有潜力,可以提高液态烃燃料的散热能力和燃烧性能,以用于先进的高速推进系统。添加FGS负载的Pt纳米颗粒可将点火延迟时间减少近三倍(12.4至4.2 ms),将喷雾扩散角增加约32.0%(15.4至20.3°),将火焰剥离长度减少54.0%(1.74)至0.8毫米),并证明相对于纯燃料基准,固定反应时间的燃料转化率提高了35.0%。这些结果支持这样的观点,即纳米结构燃料添加剂具有潜力,可以提高液态烃燃料的散热能力和燃烧性能,以用于先进的高速推进系统。添加FGS负载的Pt纳米颗粒可将点火延迟时间减少近三倍(12.4至4.2 ms),将喷雾扩散角增加约32.0%(15.4至20.3°),将火焰剥离长度减少54.0%(1.74)至0.8毫米),并证明相对于纯燃料基准,对于固定的反应时间,燃料转化率提高了35.0%。这些结果支持这样的观点,即纳米结构燃料添加剂具有潜力,可以提高液态烃燃料的散热能力和燃烧性能,以用于先进的高速推进系统。并证明相对于纯燃料基准,固定反应时间的燃料转化率提高了35.0%。这些结果支持了这样的观点,即纳米结构燃料添加剂具有潜力,可以提高液态烃燃料的散热能力和燃烧性能,以用于先进的高速推进系统。并证明相对于纯燃料基准,固定反应时间的燃料转化率提高了35.0%。这些结果支持这样的观点,即纳米结构燃料添加剂具有潜力,可以提高液态烃燃料的散热能力和燃烧性能,以用于先进的高速推进系统。

更新日期:2020-03-20
down
wechat
bug